THE UNIQUENESS OF THE (COMPLETE)
NORM TOPOLOGY

BY B. E. JOHNSON

Communicated by Richard Arens, March 7, 1967

In this paper we show that every semisimple Banach algebra over
\(\mathbb{R} \) or \(\mathbb{C} \) has the uniqueness of norm property, that is we show that if
\(\mathfrak{A} \) is a Banach algebra with each of the norms \(\| \cdot \|, \| \cdot \|' \) then these
norms define the same topology. This result is deduced from a maxi­
mum property of the norm in a primitive Banach algebra (Theorem 1).

In the following \(F \) is a field which may be taken throughout as \(\mathbb{R} \),
the real field, or \(\mathbb{C} \), the complex field. If \(\mathfrak{X} \) is a normed space then
\(\mathfrak{B}(\mathfrak{X}) \) will denote the space of bounded linear operators on \(\mathfrak{X} \).

Lemma 1. Let \(F, G \) be closed subspaces of the Banach space \(E \) such
that \(F+G=E \). Then there exists \(L>0 \) such that if \(x \in E \) then there is an
\(f \in F \) with

(i) \(\| f \| \leq L \| x \| . \)

(ii) \(x-f \in G. \)

Proof. The map \((f, g) \rightarrow f+g \) is a continuous map of \(F \oplus G \) onto \(E \)
and is open by the open mapping theorem [1, p. 34]. Thus there is
\(\delta >0 \) such that if \(y \in E \) with \(\| y \| < \delta \) then there are \(f', g' \in G \) with
\(\| f' \|, \| g' \| \leq 1 \) and \(f'+g'=y \). The result of the lemma then follows if
we take \(L=\delta^{-1}, y=x\| x \|^{-1}\delta \) and \(f=f'\| x \| . \)

Theorem 1. Let \(\mathfrak{A} \) be a Banach algebra over \(F \) and let \(\mathfrak{X} \) be a normed
space over \(F \). Suppose that \(\mathfrak{X} \) is a faithful strictly irreducible left \(\mathfrak{A}-\)
module and that the maps \(\xi \rightarrow a\xi \) from \(\mathfrak{X} \) into \(\mathfrak{X} \) are continuous for each
\(a \in \mathfrak{A} \). Then there exists a constant \(M \) such that

\[\| a\xi \|' \leq M \| a \| \| \xi \|' \]

for all \(a \in \mathfrak{A}, \xi \in \mathfrak{X}, \) where \(\| \cdot \| \) is the norm in \(\mathfrak{A} \) and \(\| \cdot \|' \) the norm in \(\mathfrak{X} \).

The theorem asserts that the natural map \(\mathfrak{A} \rightarrow \mathfrak{B}(\mathfrak{X}) \) is continuous.
It is a much stronger version of [4, Theorem 2.2.7] but applicable
only to primitive algebras. It would be interesting to know how far
it can be generalized.

Proof. If \(\xi \in \mathfrak{X} \) and \(a \rightarrow a\xi (\mathfrak{A} \rightarrow \mathfrak{X}) \) is continuous then the map \(a \rightarrow ab \rightarrow ab\xi \), being a composition of continuous maps, is continuous. Since
\(\mathfrak{X} \) is strictly irreducible, if \(\xi \neq 0 \) we can, by a suitable choice of \(b \), make
\(b\xi \) any particular vector in \(\mathfrak{X} \) and so if \(a \rightarrow a\xi \) is continuous for one
nonzero \(\xi \) it is continuous for all \(\xi \) in \(\mathfrak{X} \). We shall deduce a contradic-
tion by assuming \(a \to a\xi \) continuous only for \(\xi = 0 \) and hence show that all these maps are continuous. We assume \(\mathfrak{X} \neq \{ 0 \} \) since this case is trivial.

The \(\mathfrak{A} \)-module \(\mathfrak{X} \) is of infinite dimension over \(F \) since otherwise, as \(\mathfrak{X} \) is faithful, \(\mathfrak{U} \) would be a finite dimensional algebra and any linear map \(\mathfrak{A} \to \mathfrak{X} \) would be continuous. Since \(\mathfrak{X} \) is a strictly irreducible \(\mathfrak{A} \)-module the norm on \(\mathfrak{A} \) determines a complete norm \(\| \cdot \| \) on \(\mathfrak{X} \) [4, Theorem 2.2.6] and so the centralizer \(\mathfrak{D} \) of \(\mathfrak{A} \) on \(\mathfrak{X} \) is isomorphic with \(R, C \) or the quaternions [4, Lemma 2.4.4] and in any case is of finite dimension over \(F \). Since \(\mathfrak{X} \) is of infinite dimension over \(F \) it is of infinite dimension over \(\mathfrak{D} \). We can thus choose a linearly independent (over \(\mathfrak{D} \)) sequence \(\xi_1, \xi_2, \ldots \) from \(\mathfrak{X} \) with \(\| \xi_i \|' = 1 \).

We now show that for each \(K, \epsilon > 0 \) and for each positive integer \(m \) there is \(x \in \mathfrak{A} \) such that

(i)' \(\| x \| < \epsilon \).

(ii)' \(x\xi_1 = x\xi_2 = \cdots = x\xi_{m-1} = 0 \).

(iii)' \(\| x\xi_m \|' > K \).

Put \(J_i = \{ a; \ a \in \mathfrak{A}, a\xi_i = 0 \} \), then [3, p. 6, Theorem 2] \(J_i \) is a maximal modular left ideal and \(I = (J_1 \cap J_2 \cdots \cap J_{m-1}) + J_m \) is a left ideal containing \(J_m \). Since \(\xi_1, \ldots, \xi_m \) are linearly independent over \(\mathfrak{D} \) we can find, by the density theorem [3, p. 28], \(y \in \mathfrak{U} \) such that \(y\xi_1 = y\xi_2 = \cdots = y\xi_{m-1} = 0 \) and \(y\xi_m = \xi_m \neq 0 \). We have \(y \in I \), \(y \in J_m \) so that \(I \) contains \(J_m \) properly and, by maximality of \(J_m \), \(I = \mathfrak{A} \). Take the number \(L \) given by applying Lemma 1 with \(E = \mathfrak{U} \), \(F = J_1 \cap J_2 \cdots \cap J_{m-1} \), \(G = J_m \). By the discontinuity of the map \(x \to x\xi_m \) we can find \(x_0 \in \mathfrak{U} \) satisfying (i)' with \(\epsilon \) replaced by \(\epsilon/L \) and (iii)'. Then, by Lemma 1, there exists \(x \in J_1 \cap J_2 \cdots \cap J_{m-1} \) (so that (ii)' holds for \(x \)), such that \(x_0 - x \in J_m \) (i.e. \(x_0\xi_m = x\xi_m \)) and \(\| x \| \leq L \| x_0 \| < \epsilon \).

Now choose, by induction, a sequence \(x_1, x_2, \ldots \) in \(\mathfrak{A} \) such that

(i)'\(\| x_n \| < 2^{-n} \).

(ii)'\(x_n\xi_1 = \cdots = x_n\xi_{m-1} = 0 \).

(iii)'\(\| x_n\xi_m \|' \geq n + \| x_1\xi_n + \cdots + x_{n-1}\xi_n \|' \).

Put \(z_i = \sum_{n>i} x_n \). Since \(x_n \in J_i \) for \(n > i \) and \(J_i \) is closed in \(\mathfrak{A} \) we see that \(z_i \in J_i \), that is \(z_i\xi_i = 0 \), and \(z_0 = x_1 + \cdots + x_i + z_i \) Thus

\[
\| z_0\xi_i \|' = \| x_1\xi_i + \cdots + x_i\xi_i + z_i\xi_i \|' \\
\geq \| x_i\xi_i \|' - \| x_1\xi_i + \cdots + x_{i-1}\xi_i \|' \\
\geq i,
\]

using (iii)'\(\| \xi_i \|' = 1 \) this contradicts the hypothesis that \(\xi \to z_0\xi \) is a bounded linear operator in \(\mathfrak{X} \).

We have shown that \((a, \xi) \to a\xi \) is continuous \((\mathfrak{A}, \| \|) \to (\mathfrak{X}, \| \|') \)
for each $\xi \in \mathcal{F}$. The result of the theorem now follows since we also have that $(a, \xi) \rightarrow a\xi$ is continuous for fixed a (by hypothesis) and so by [2, p. 38, Proposition 2] $(a, \xi) \rightarrow a\xi$ is jointly continuous.

Theorem 2. Let \mathfrak{A} be a semisimple algebra over \mathbb{R} or \mathbb{C}. Let $\| \|$, $\| \|'$ be norms on \mathfrak{A} such that $(\mathfrak{A}, \| \|)$ and $(\mathfrak{A}, \| \|')$ are Banach algebras. Then the norms $\| \|$, $\| \|'$ define the same topology on \mathfrak{A}.

Proof. By [4, Chapter 2, §5, in particular p. 74] it is enough to prove the result for primitive \mathfrak{A}. Thus we are in the position of Theorem 1 with $\mathcal{X} = \mathfrak{A}/J$ for some maximal modular left ideal J in \mathfrak{A}. We denote the quotient norms on \mathcal{X} obtained from $\| \|$ and $\| \|'$ on \mathfrak{A} by the same symbols. Suppose $\| x_n \| \rightarrow 0$ and $\| x_n - y \|' \rightarrow 0$ $(x_n, y \in \mathfrak{A})$. Then for each $\xi \in \mathcal{X}$ we have $\| x_n \xi - y \xi \|' \rightarrow 0$. However using Theorem 1 we see that $\| x_n \| \rightarrow 0$ implies $\| x_n \xi \|' \rightarrow 0$ so that $y \xi = 0$ for each $\xi \in \mathcal{X}$ and, since the representation is faithful, $y = 0$. The closed graph theorem [1, p. 37] then shows that the identity map $(\mathfrak{A}, \| \|) \rightarrow (\mathfrak{A}, \| \|')$ is continuous and the result follows by arguing with $\| \|$ and $\| \|'$ interchanged.

References

The University, Newcastle upon Tyne, England.