NOTE ON ARTIN'S SOLUTION OF HILBERT'S
17TH PROBLEM

BY D. W. DUBOIS

Communicated by R. S. Pierce, March 15, 1967

A uniquely orderable field \(F \) and a polynomial \(f(X) \) over \(F \) are constructed in such a manner that \(f(X) \), though positive at every point of \(F \), is not a sum of squares of elements of the rational function field \(F(X) \).

Artin's solution of Hilbert's problem asserts [2] that if a rational function assumes no negative values then it is a sum of squares, provided the coefficient field has exactly one order and that order is Archimedean; in Hilbert's formulation the coefficients are rational numbers. For definitions and a more detailed proof of Artin's theorem see Jacobson [6, Chapter VI]. Our example shows that the Archimedean hypothesis in Artin's theorem is not superfluous, contrary to Corollary 2, p. 278 of [8].

Let \(\mathbb{Q} \) be the field of all rational numbers, let \(t \) be an indeterminate, let \(\mathbb{Q}(t) \) be ordered so that \(t \) is positive and infinitesimal and let \(K \) be a real closure of \(\mathbb{Q}(t) \). Let \(F \) be the field over \(\mathbb{Q}(t) \) consisting of all elements of \(K \) obtainable from \(\mathbb{Q}(t) \) by means of a finite sequence of rational operations and square root extractions, exactly as in ruler and compass considerations. Since every positive element of \(F \) has its square roots in \(F \), \(F \) has exactly one order. Set [1, p. 115]

\[
f(X) = (X^2 - t)^2 - t^3,
\]

where \(X \) is a variable. Then \(f(X) \) is not a sum of squares in \(F(X) \) (nor even in \(K(X) \)), since \(f(1) \) and \(f(t^{1/3}) \) have opposite signs. Now we shall show that \(f(X) \) is positive as a function on \(F \). It has long been known [4], [7] that the ring \(B \) of all finite elements of \(K \) (\(u \) is finite if \(\left| u \right| < n \) for some integer \(n \)) is a valuation ring in \(K \). The induced valuation \(v \) is a measure of order of magnitude, the significance of \(v(a) < v(b) \) being that \(a^{-1}b \) is infinitesimal. Denoting by \(G \) the value group of \(K \) written in additive notation, and observing that \(G \) is a torsionfree abelian group, we shall show that \(G \) may be identified with (the additive group of) \(\mathbb{Q} \), with \(v(t) = 1 \). The ramification relation \(ef \leq n \) [3, p. 122], together with the algebraic character of \(K \) over \(\mathbb{Q}(t) \), implies that the rank of \(G \) is one. Hence [5, §42] \(G \) can be embedded in \(\mathbb{Q} \) so that \(v(t) \) maps onto \(1 \); moreover \(K \) contains \(n \)th roots of \(t \) for all \(n \); so the embedding is onto. In other words \(G \) can be identified, and now will
be, with Q. It is altogether easy to see that if $f(y)$ is negative then $v(y) = 1/3$. But if z is any member of F then z belongs to a field H_r at the top of a finite tower

$$Q(t) = H_0 \subset H_1 \subset \cdots \subset H_r$$

of subfields of K, where each step is quadratic. An application of the ramification relation with $n = 2$ shows that the value group of H_i has index one or two in the value group of H_{i+1}. Consequently $v(z)$ has the form $m/2^k$ for some integers m and k. Since $m/2^k$ cannot be $1/3$, $f(z)$ is positive and all is proved.

References