Fourier series on the ring of integers in a $p$-series field
HTML articles powered by AMS MathViewer
- by Mitchell H. Taibleson PDF
- Bull. Amer. Math. Soc. 73 (1967), 623-629
References
- N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. MR 32833, DOI 10.1090/S0002-9947-1949-0032833-2
- N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588–591. MR 70757, DOI 10.1073/pnas.41.8.588
- L. H. Harper, Capacities of sets and harmonic analysis on the group $2^{\omega }$, Trans. Amer. Math. Soc. 126 (1967), 303–315. MR 206627, DOI 10.1090/S0002-9947-1967-0206627-X
- Keith Phillips, Hilbert transforms for the $p$-adic and $p$-series fields, Pacific J. Math. 23 (1967), 329–347. MR 239471, DOI 10.2140/pjm.1967.23.329
- P. J. Sally Jr. and M. H. Taibleson, Special functions on locally compact fields, Acta Math. 116 (1966), 279–309. MR 206349, DOI 10.1007/BF02392818
- E. Study, Ueber eine besondere Classe von Functionen einer reellen Veränderlichen, Math. Ann. 47 (1896), no. 2-3, 298–316 (German). MR 1510906, DOI 10.1007/BF01447272 7. M. H. Taibleson, Harmonic analysis on n-dimensional vector spaces over local fields, I, Basic results on fractional integration, (to appear).
- N. Ja. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. (2) 28 (1963), 1–35. MR 0154042, DOI 10.1090/trans2/028/01
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 623-629
- DOI: https://doi.org/10.1090/S0002-9904-1967-11801-9
- MathSciNet review: 0217522