SYMMETRY IN NONSELFADJOINT STURM-LIOUVILLE SYSTEMS

BY J. W. NEUBERGER

Communicated by P. R. Halmos, April 27, 1967

Suppose that \(a < b \) and \(C \) is the inner product space of all continuous real-valued functions on \([a, b]\) such that \(||f|| = (\int_a^b |f|^2) \) if \(f \) is in \(C \). Denote by each of \(p \) and \(q \) a member of \(C \) such that \(p(x) > 0 \) for all \(x \) in \([a, b]\). Denote by each of \(W \) and \(Q \) a real \(2 \times 2 \) matrix and denote by \(C' \) the subspace of \(C \) consisting of all \(f \) in \(C \) such that \((pf')' - qf \) is in \(C \) and

\[
W \begin{bmatrix} f'(a) \\ p(a)f'(a) \end{bmatrix} + Q \begin{bmatrix} f'(b) \\ p(b)f'(b) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

Denote by \(L \) the transformation from \(C' \) to \(C \) such that if \(f \) is in \(C' \), then \(Lf = (pf')' - qf \). Assume for the remainder of this note that \(L \) has an inverse \(T \). The purpose of this note is to point out that if \(T \neq T^* \), it is nevertheless true that \(T \) is very closely related to a symmetric operator. Specifically \(T \) is a dilation (via the two-dimensional space of solutions to the homogeneous equation) of a symmetric operator. This fact permits an analysis of \(T \) using the theory of completely continuous symmetric operators. This suggests a worthwhile alternative to the approach taken in [1, Chapter 12], in which the general theory of completely continuous operators is used.

Denote by \(S' \) the subspace of \(C \) consisting of all \(f \) so that \((pf')' - qf = 0 \) and denote by \(S \) the orthogonal complement in \(C \) of \(S' \). Denote by \(P \) the orthogonal projection of \(C \) onto \(S' \).

Theorem 1. If \(T \neq T^* \), then \(Tg = T^*g \) if and only if \(g \) is in \(S \).

Theorem 2. If \(V \) is the restriction of \((I-P)T\) to \(S \), then \(V^* = V \).

Indication of Proof of Theorem 1. From [2] one has that if \(g \) is in \(C \), then the member \(f \) of \(C' \) so that \(Lf = g \) is such that

\[
\begin{bmatrix} f(t) \\ p(t)f'(t) \end{bmatrix} = \int_a^b \begin{bmatrix} K_{11}(t, j)K_{12}(t, j) \\ K_{21}(t, j)K_{22}(t, j) \end{bmatrix} \begin{bmatrix} 0 \\ g \end{bmatrix} \text{ for all } t \text{ in } [a, b] \text{ (} j(x) = x \text{ if } x \text{ is in } [a, b]) \text{ where}
\]

701
\[
\begin{bmatrix}
K_{11}(t, u)K_{12}(t, u) \\
K_{21}(t, u)K_{22}(t, u)
\end{bmatrix} = K(t, u)
\]

\[
= \begin{cases}
M(t, a)[W + QM(b, a)]^{-1}WM(a, u) & \text{if } a \leq u \leq t, \\
-M(t, a)[W + QM(b, a)]^{-1}QM(b, a)M(a, u) & \text{if } t < u \leq b
\end{cases}
\]

and \(M \) is such that

\[
M(t, u) = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} + \int_u^t \begin{bmatrix}
0 & 1/p \\
q & 0
\end{bmatrix} M(j, u) \quad \text{for all } t, u \text{ in } [a, b].
\]

\(M \) is denoted by \(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \),

\(QM(b, a) \) by \(Z \) and \(\det [W+Z] \) by \(\Delta \). Straightforward computation gives that

\[
\Delta K_{12}(t, u) = \begin{cases}
A(t, a)[\det W + (\tilde{W})_{11}]B(a, u) + B(t, a)(\tilde{W})_{21}B(a, u) \\
+ A(t, a)(\tilde{W})_{12}D(a, u) + B(t, a)[\det W + (\tilde{W})_{22}]D(a, u) & \text{if } a \leq u \leq t \\
-B(t, u) \det W - A(t, a)B(u, a)(\tilde{W})_{11} + A(t, a)A(u, a)(\tilde{W})_{12} \\
-B(t, a)B(u, a)(\tilde{W})_{21} + B(t, a)A(u, a)(\tilde{W})_{22} & \text{if } t < u \leq b
\end{cases}
\]

since \(A(x, y) = D(y, x), B(x, y) = -B(y, x) \) and \(C(x, y) = -C(y, x) \) if \(x, y \) are in \([a, b]\).

From this it follows that

\[
K_{12}(y, x) - K_{12}(x, y) = (\det W - \det Q)B(y, x)/\Delta
\]

for all \(x, y \) in \([a, b]\). Noting that if \(g \) is in \(C \), then the member \(f \) of \(C' \) so that \(Lf = g \) is given by \(f(t) = \int_a^t K_{12}(t, j)g \) for all \(t \) in \([a, b]\), one sees that \((Tg)(t) = \int_a^t K_{12}(t, j)g \) for all \(t \) in \([a, b]\) and \(g \) in \(C \). Hence if \(g \) is in \(C \) and \(t \) is in \([a, b]\), \((T^*g)(t) = \int_a^t K_{12}(j, t)g \) and \((Tg)(t) - (T^*g)(t) = \Delta^{-1}(\det W - \det Q)\int_a^t B(t, j)g \). Hence if \(g \) is in \(S \) and \(t \) is
in \([a, b]\), \((Tg)(t) - (T^*g)(t) = 0\) since \(B(t, j)\) is in \(S'\) inasmuch as \(B(j, t) = -A(j, a)B(t, a) + B(j, a)A(t, a)\).

Suppose \(T \neq T^*\). Then \(\det W - \det Q \neq 0\). Hence if \(g\) is in \(C\) and \(Tg = T^*g\), then \(0 = \int_a^b B(t, j)g = -A(t, a) \int_a^b B(j, a)g + B(t, a) \int_a^b A(j, a)g\) for all \(t\) in \([a, b]\) and hence \(\int_a^b B(j, a)g = 0 = \int_a^b A(j, a)g\). Therefore \(g\) is in \(S\).

Proof of Theorem 2. If each of \(h\) and \(g\) is in \(S\), \((Vh, g) = ((I - P)Th, g) = (Th, (I - P)g) = (h, T^* g) = (h, Tg) = ((I - P)h, Tg) = (h, (I - P)Tg) = (h, Vg)\) and so \(V^* = V\).

References

Emory University