ON THE STRUCTURE OF MAXIMALLY ALMOST
PERIODIC GROUPS

BY THEODORE W. WILCOX

Communicated by Richard Arens, May 16, 1967

1. Introduction. A topological group G is said to be maximally almost
periodic if the continuous almost periodic functions separate
points in G, or equivalently if the continuous finite-dimensional uni­
tary representations of G separate points in G. See [4], or [2, §18].
Throughout this note, we use “representation” to mean “continuous
finite-dimensional unitary representation”. Our purpose here is to
announce some results concerning maximally almost periodic (MAP)
groups which are independent of the classical theorem of Freudenthal-
Weil which states that a locally compact connected group is MAP
if and only if it is the direct product of \mathbb{R}^n and a compact group
[6, §§30, 31].

The results in this note comprise a portion of the author’s doctoral
dissertation. Detailed proofs of these and other results will appear at a
later date. The author thanks his thesis advisor, Professor Edwin
Hewitt, and Professor Lewis Robertson for all their assistance and
encouragement.\\1

2. Definitions and notation. Let K be a (Hausdorff but not neces­
sarily locally compact) topological group, G a normal subgroup of K
and $T = \{t(x): x \in K\}$ be the group of topological automorphisms of
G which are restrictions to G of inner automorphisms of K. Let \hat{K}
(and \hat{G} resp.) be the space of equivalence classes of irreducible repre­
sentations of K (and G resp.). In an investigation of \hat{K} it is natural to
consider the action on \hat{G} induced by T. For example, see [1]. Let U
be a representation, $U \subset \sigma \subset \hat{G}$, define $t^*(x)U = U \circ t(x)^{-1}$ and define
$t^*(x)\sigma$ to be the equivalence class of $t^*(x)U$. If the set $\{t^*(x)\sigma:
(t(x) \in T\}$ is finite, then σ is said to be finitely orbited by T. Let $F(\hat{G}, T)$
be the set $\{\sigma \in \hat{G}: \sigma$ is finitely orbited by $T\}$. The von Neumann kernel
of a group is the intersection of all kernels of representations of that
group.

3. Results.

THEOREM 1. Let K, G and T be as above. If $U \subset \sigma \subset \hat{K}$ and if $y \in G$
are such that $U_y \neq I$, then there exists an element of $F(\hat{G}, T)$ which separates

\\1 This research was supported by a NASA Predoctoral Traineeship at the Univer­
sity of Washington.
This is proved by utilizing the uniqueness of the decomposition into a direct sum of irreducible constituents of the restriction of U to G; the equivalence classes of these constituents are permuted by the action of T.

Theorem 2. Let K, G and T be as above. Let $\sigma \in F(\hat{G}, T)$ and let $O(\sigma, T)$ be the orbit of σ by T. Then the mapping Σ which sends x onto the restriction of $t^*(x)$ to $O(\sigma, T)$ is well defined and is a continuous homomorphism of K onto a finite group. The kernel of Σ contains G.

In general the condition that $F(\hat{G}, T)$ separate points in G is not enough to imply that K is MAP even if K/G is assumed to be MAP. However, if K is the semidirect product of G and a topological group H, $K = G \rtimes H$, then we have

Theorem 3. Let $K = G \rtimes H$. Let H_0 (and $(G \rtimes H)_0$ resp.) be the von Neumann kernel of H (and $G \rtimes H$ resp.). Let $S = \cap \{ \ker U : U \in \sigma \in F(\hat{G}, \beta(H)) \}$. Then $(G \rtimes H)_0 = S \rtimes H_0$. In particular, $G \rtimes H$ is MAP if and only if H is MAP and $F(\hat{G}, \beta(H))$ separates points in G.

The connection between $\beta(H)$ here and the T above follows from the equation $t(e, h)(x, e) = (\beta(h)(x), e)$. See [2, p. 7]. The major difficulty in the proof of this theorem is to show that if $g \in G$ and if $U \in \sigma \in F(\hat{G}, \beta(H))$ are such that $U_g \neq I$, then there exists a representation V of K which separates (g, e) from the identity. A rough sketch follows. Let Σ be the homomorphism corresponding to σ defined in Theorem 2. Then $\ker \Sigma = G \rtimes M$ and $(G \rtimes H)/(G \rtimes M)$ is a finite group.

Let $\mathfrak{U}(n)$ be the unitary group of U and use Burnside’s theorem [3, p. 276] to know that the set $\{ U_x : x \in G \}$ spans the n^2-dimensional Hilbert space of all linear operators on C^* (C is the field of complex numbers). A closed subgroup \mathfrak{H} of $\mathfrak{U}(n^2)$, a semidirect product $\mathfrak{U}(n) \rtimes \mathfrak{H}$ and a continuous homomorphism ϕ of $G \rtimes M$ into $\mathfrak{U}(n) \rtimes \mathfrak{H}$ are constructed. Then $\phi(g, e)$ can be separated from the identity by a representation W of the compact group $\mathfrak{U}(n) \rtimes \mathfrak{H}$ and the desired representation V of K is induced from the representation $W \circ \phi$ of $\ker \Sigma$.

If G is an Abelian group, then we can identify the character group X of G with \hat{G} and with the notation as in 2 above, $F(X, T)$ is a subgroup of X.

Theorem 4. Let V be a normal subgroup of a topological group K. Assume further that V is topologically isomorphic to the additive group
of a finite-dimensional vector space over some locally compact, nondiscrete field of characteristic zero. Let C be the centralizer of V in K. Then K is MAP if and only if C is MAP and K/C is a finite group.

We make use of Pontrjagin's classification of locally compact fields [5, Satz 22] and the fact that the field of real numbers and the p-adic number fields are self-dual to show that the finitely orbited characters of V form a subspace of V, so that $F(V, T)$ is closed in V. Furthermore, it follows from Theorem 1 that $F(V, T)$ is dense in V. These facts imply that T must be finite so that C must have finite index in K.

Using a p-series field, a group can be constructed to show that the hypothesis above (that the field have characteristic zero) is essential.

References

University of Washington