AN EXAMPLE IN THE FIXED POINT THEORY OF POLYHEDRA

BY WILLIAM LOPEZ

Communicated by Felix Browder, May 29, 1967

1. Introduction. A finite polyhedron is constructed which enables us to answer the following questions in the negative.

(1) Is the fixed point property a homotopy type invariant in the category of finite polyhedra?

(2) Is the fixed point property a product invariant in the category of finite polyhedra, i.e. if K_1 and K_2 have the fixed point property, does $K_1 \times K_2$ have the fixed point property?

The author is indebted to Professor Edward Fadell for bringing these questions to his attention, and pointing out that if one found a polyhedron with the fixed point property and yet admitted a map with even Lefschetz number, then these questions could be answered.

2. The example. Let

$$X = P_2(C) \cup S_1 \times S_2 \cup P_4(C)$$

where $P_2(C)$ and $P_4(C)$ are complex projective spaces, S_1 and S_2 are 2-spheres, and the following identifications are made. Letting $(b_1, b_2) \in S_1 \times S_2$ be a base point, $P_1(C) \subset P_2(C)$ is identified with $S_1 \times b_2$ and $P_1(C) \subset P_4(C)$ is identified with $b_1 \times S_2$.

The cohomology ring structure of X over the rational field \mathbb{Q} is given by:

- $H^0(X; \mathbb{Q}) = \mathbb{Q}$, with generator 1,
- $H^2(X; \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}$, with generators α, β,
- $H^4(X; \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$, with generators $\alpha^2, \alpha \beta, \beta^2$,
- $H^6(X; \mathbb{Q}) = \mathbb{Q}$, with generator β^3,
- $H^8(X; \mathbb{Q}) = \mathbb{Q}$, with generator β^4.

All odd cohomology is zero, and furthermore, $\alpha^2 = \alpha^4 = \alpha \beta^2 = \alpha^2 \beta = 0$.

Note that $\chi(X) = 8$. (χ denotes Euler characteristic.)

Theorem 1. X has the fixed point property.

1 This research was supported by the National Science Foundation under Grant GP-6682 and constitutes part of the author's dissertation written under the direction of Professor Edward Fadell.
PROOF. Let \(f: X \rightarrow X \) denote any map and suppose \(f^*(\alpha) = a\alpha + b\beta, \)
\(f^*(\beta) = c\alpha + d\beta. \) Let \(g \) denote the composite
\[P_4(C) \xrightarrow{i} X \xrightarrow{f} X \xrightarrow{r} P_4(C) \]
where \(r \) is the retraction which sends \(S_1 \times S_2 \) onto \(S_1 \times b_2 \) and \(P_4(C) \)
onto \((b_1, b_2). \) If \(\alpha_1, \beta_1 \in H^2(P_4(C)) \) and \(\beta_1 \in H^3(P_4(C)) \) are generators, then
\(g^*(\alpha_1) = b\beta_1 \) and \(g^*(\beta_2) = b^*\beta_2 = 0. \) Thus \(b = 0 \) and hence the Lefschetz
number of \(f \) is given by
\[
L(f) = 1 + a + d + a^2 + ad + d^2 + d^3 + d^4
\]
\[= (a + \frac{1}{2} + d/2)^2 + \frac{1}{2}(4d^4 + 4d^3 + 3d^2 + 2d + 3). \]
If we let
\[
p(d) = 4d^4 + 4d^3 + 3d^2 + 2d + 3, \quad p'(d) = 2(2d + 1)(4d^2 + d + 1)
\]
and we see that \(p(d) \geq p(-1/2) = 5/2 \) and hence \(L(f) > 0. \)

3. Consequences. We first recall a theorem of Wecken [3, The­
orem 2] which may be stated, in part, as follows:

THEOREM W. Let \(K \) be a finite polyhedron with the property that no
finite collection of points separates \(K. \) Then \(K \) admits a fixed point free
map (homotopic to identity) if \(\chi(K) = 0. \)

Let \(Y = \Sigma P_4(C) \) be the suspension of complex projective 8-space.
A simple argument using Steenrod squares shows that \(Y \) has the
fixed point property. Since \(\chi(Y) = -7, \chi(X \setminus Y) = 0. \)

THEOREM 2. \(X \setminus Y \) is a finite polyhedron of Euler characteristic 0
with the fixed point property.

THEOREM 3. \(X \) and \(Y \) are two finite polyhedra with the fixed point
property such that their union along an edge fails to have the fixed point
property.

Just apply Theorem W to \(X \cup_f Y, \) the union of \(X \) and \(Y \) joined
along an edge.

Since \(X \setminus Y \) and \(X \cup_f Y \) are of the same homotopy type, we have
the following:

COROLLARY. The fixed point property is not a homotopy type invariant
in the category of finite polyhedra.

Now, let \(Z = X \setminus Y. \) Applying Theorem W to \(Z \times I \) and \(Z \times Z \)
we obtain
THEOREM 4. Z is a polyhedron with the fixed point property such that $Z \times I$ and $Z \times Z$ fail to have the fixed point property. Thus the fixed point property is not a product invariant in the category of finite polyhedra.

Note that $\chi(\Sigma^2 Z) = 0$ and hence, using Theorem W again, the double suspension $\Sigma^2 Z$ admits a fixed point free map. ΣZ either admits a fixed point free map or has the fixed point property. In either case, we obtain

THEOREM 5. There is a finite polyhedron K with the fixed point property such that ΣK fails to have the fixed point property.

REMARKS. Note that all the above examples are simply connected.

We might also mention that, using [1] and [2], the fixed point property is a homotopy type invariant in the category of polyhedra of dim≥ 2 having the homotopy type of simply connected, closed topological manifolds.

REFERENCES

UNIVERSITY OF WISCONSIN