ON DIRECT PRODUCTS OF GENERALIZED
SOLVABLE GROUPS

BY RICHARD E. PHILLIPS

Communicated by W. Feit, May 26, 1967

Let \(G_\alpha (\alpha \in \Gamma) \) be a set of groups. The direct product \(\prod \{ G_\alpha | \alpha \in \Gamma \} \)
is the set of all functions \(f \) on \(\Gamma \) such that \(f(\alpha) \in G_\alpha \) for all \(\alpha \in \Gamma \), with
multiplication of functions defined componentwise. The direct sum
\(\sum \{ G_\alpha | \alpha \in \Gamma \} \) is the subgroup of \(\prod \{ G_\alpha | \alpha \in \Gamma \} \) consisting of all
functions \(f \) with finite support.

A collection \(\mathcal{G} \) of groups is called a class of groups if \(E \in \mathcal{G} \), and iso-
morphic images of \(\mathcal{G} \) groups are \(\mathcal{G} \) groups. We use the following nota-
tion of P. Hall [1]. If \(\mathcal{G} \) is a class of groups, \(S(\mathcal{G}) \), \(Q(\mathcal{G}) \), \(DS(\mathcal{G}) \),
\(DP(\mathcal{G}) \) denote respectively the classes of groups which are subgroups,
quotient groups, direct sums and direct products of \(\mathcal{G} \) groups.

The following theorem was proved by Merzulakov in [2].

Theorem 1. If \(\mathcal{G} \) is a class of groups satisfying
(a) \(S(\mathcal{G}) = \mathcal{G} \),
(b) \(Q(\mathcal{G}) = \mathcal{G} \),
(c) \(G \) is a finite \(\mathcal{G} \) group if and only if \(G \) is nilpotent, then \(DP(\mathcal{G}) \neq \mathcal{G} \).

In this paper, a similar theorem is obtained for generalized solvable
groups. Before stating these results, we need several definitions.

Definition 1. Let \(G \) be a group, \(x \in G \), \(g \in G \). Define \([g, 0x] = g\),
and inductively \([g, nx] = [\{g, (n-1)x\}, x] \) for each positive integer \(n \).
\(x \) is called a left \(G \) Engel element if for each \(g \in G \) there exists an inte-
ger \(n = n(g) \) such that \([g, nx] = e\).

The Hirsch-Plotkin radical of a group \(G \) is the maximum normal
locally nilpotent subgroup of \(G \). We denote the Hirsch-Plotkin radical
of \(G \) by \(\phi_1(G) \).

Definition 2. Let \(G \) be a group and \(\phi_0(G) = E \). If \(\alpha \) is not a limit
ordinal, define \(\phi_\alpha(G) \) by \(\phi_\alpha(G)/\phi_{\alpha-1}(G) = \phi_1(G/\phi_{\alpha-1}(G)) \). If \(\alpha \) is a limit
ordinal, define \(\phi_\alpha(G) \) by \(\phi_\alpha(G) = \bigcup \{ \phi_\beta | \beta < \alpha \} \). If for some ordinal \(\sigma \),
\(\phi_\sigma(G) = G \), \(G \) is called an \(LN \)-radical group.

In the following, \(\mathcal{L} \) will denote the class of \(LN \)-radical groups. If
\(G \in \mathcal{L} \), and \(\sigma \) is the least ordinal for which \(\phi_\sigma(G) = G \), \(\sigma \) is called the
radical class of \(G \). It is well known that \(S(\mathcal{L}) = \mathcal{L} \), \(Q(\mathcal{L}) = \mathcal{L} \), and
that every solvable group is in \(\mathcal{L} \) [3]. It is easily shown that if \(n \) is a
positive integer, there exist finite solvable groups of radical class \(n \)
[4, p. 220].

We need the following theorem of Plotkin [3].

973

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2. If \(G \in \mathcal{L} \), then the set of left Engel elements of \(G \) is a subgroup, and this subgroup coincides with the Hirsch-Plotkin radical of \(G \).

In the remainder of this paper, \(J \) will denote the set of nonnegative integers.

Theorem 3. Let \(n \in J \) and \(G_n \in \mathcal{L} \) have radical class \(n \). Then \(G = \prod \{ G_n | n \in J \} \in \mathcal{L} \).

Proof. Let \(R_k = \prod \{ \phi_k(G_n) | n \in J \} \) and \(R = \bigcup \{ R_k | k \in J \} \). Then \(R \triangleleft G \) and \(R \neq G \). We show that \(\phi_1(G/R) = E \).

Suppose to the contrary that \(\phi_1(G/R) \neq E \) and let \(y \in R \). Then \(y \) is a left \(G/R \) Engel element. Thus for each \(x \in G \setminus R \), there exists a positive integer \(n = n(x) \) such that \([x, ny] \in R \).

Hence for each \(x \in G \setminus R \), there exist nonnegative integers \(n = n(x) \) and \(k = k(x) \) such that \([x, ny]^k \in R_k \).

We now construct an \(x \in G \) for which the above assertions do not hold. Since \(y \in R \), there exists \(i \in J \) such that \(y(i) \in \phi_1(G_i) \). By Theorem 2, \(y(i) \) is not a left \(G_i \) Engel element. Hence there exists \(x_{i_1} \in G_{i_1} \) such that \([x, sy(i)] \in \phi_0(G_{i_1}) = E \) for all \(s \in J \).

Suppose nonnegative integers \(i_1 < i_2 < \cdots < i_r \) and elements \(x_{i_j} \in G_{i_j} (1 \leq j \leq r) \) have been found so that for \(1 \leq j \leq r \), \([x, sy(i_j)] \in \phi_{j-1}(G_{i_j}) \) for all \(s \in J \). Since \(y \in R \), there exists an integer \(i_{r+1} > i_r \) such that \(y(i_{r+1}) \in \phi_{r+1}(G_{i_{r+1}}) \). Thus, by Theorem 2 \(y(i_{r+1}) \) is not a left \(G_{i_{r+1}} \) Engel element. Hence there exists \(x_{i_{r+1}} \in G_{i_{r+1}} \) such that \([x, sy(i_{r+1})] \in \phi_r(G_{i_{r+1}}) \) for all \(s \in J \).

Let \(I = \{ i_1, i_2, \cdots, i_r, \cdots \} \). Define \(x \in G \) as follows: \(x(\eta) = x_\eta \) if \(\eta \in I \) and \(x(\eta) = e \) otherwise. Let \(k \in J \). Then \([x, sy] \in R_k \) for all \(s \in J \).

This is contrary to the first paragraph of this proof.

Theorem 4. Let \(\mathfrak{B} \) be a class of groups such that

(a) \(\mathfrak{B} \subseteq \mathcal{L} \),

(b) every finite solvable group is contained in \(\mathfrak{B} \).

Then \(DP(\mathfrak{B}) \neq \mathfrak{B} \).

Proof. The proof follows from Theorem 3 and the existence of finite solvable groups of radical class \(n \) for each \(n \in J \).

The direct product \(\prod \{ G_\alpha | \alpha \in \Gamma \} \) is called a direct power of \(H \) if each \(G_\alpha \) is isomorphic to \(H \). If \(\mathfrak{B} \) is a class of groups, \(dp(\mathfrak{B}) \) will denote the class of groups which are direct powers of \(\mathfrak{B} \) groups.

In the next theorem, \(S \) will denote the class of solvable groups.

Theorem 5. If \(\mathfrak{B} \) is a class of groups such that

(a) \(\mathfrak{B} \subseteq \mathcal{L} \),

(b) \(DS(\mathfrak{B}) \subseteq \mathfrak{B} \),

Then \(dp(\mathfrak{B}) \neq \mathfrak{B} \).
PROOF. Let \(G = \sum \{ G_n \, | \, n \in J \} \) where \(G_n \) is solvable of radical class \(n \). Then \(G \in \Phi \) and has radical class \(\omega \). Let \(H = \prod \{ H_k \, | \, k \in J, H_k \cong G \} \). \(H \) has a subgroup satisfying the hypothesis of Theorem 3. Hence \(H \in \Phi \). Consequently, \(H \in \Phi \).

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes \(SN^* \), \(SI^* \), subsolvable and polycyclic.

BIBLIOGRAPHY

UNIVERSITY OF KANSAS

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If \(\Omega \) is the vector space of \(C^\infty \) 1-forms on a \(C^\infty \) manifold \(M \), then iterated integrals along a piecewise smooth path \(\alpha : [0, 1] \to M \) can be inductively defined as below:

For \(r \geq 2 \) and \(w_1, w_2, \cdots, \in \Omega \),

\[
\int \alpha w_1 \cdots w_r = \int_0^1 \left(\int \alpha^t \left(\int \alpha^{t+1} \cdots \int \alpha^{r+s} \right) \right) dt
\]

where \(\alpha^t = \alpha | [0,t] \). (See [3].)

This note is based on the following algebraic properties of the iterated integration:

(a) \((\int \alpha w_1 \cdots w_r)(\int \alpha w_{r+1} \cdots w_{r+s}) = \sum \int \alpha w_1 \cdots w_{r+s} \) summing over all \((r,s)\)-shuffles, i.e. those permutations \(\sigma \) of \(\{1, \cdots, r+s\} \) with \(\sigma^{-1}(1) < \cdots < \sigma^{-1}(r), \sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s) \).

(b) If \(p = \alpha(0) \) and if \(f \) is any \(C^\infty \) function on \(M \), then

\[
\int \alpha f w = \int \alpha (df) w + f(p) \int \alpha w.
\]

The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.