A Fatou-type theorem for harmonic functions on symmetric spaces
Authors:
S. Helgason and A. Korányi
Journal:
Bull. Amer. Math. Soc. 74 (1968), 258-263
DOI:
https://doi.org/10.1090/S0002-9904-1968-11912-3
MathSciNet review:
0229179
Full-text PDF Free Access
References | Additional Information
- R. E. Edwards and Edwin Hewitt, Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181–218. MR 177259, DOI https://doi.org/10.1007/BF02391777
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI https://doi.org/10.2307/1970220
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI https://doi.org/10.2307/2372786
- F. I. Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc. 1965 (1967), 51–199. Amer. Math. Soc., Providence, R.I., 1967. MR 0231321 5. A. W. Knapp, unpublished manuscript.
- Calvin C. Moore, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201–218. MR 161942, DOI https://doi.org/10.2307/2373040 7. E. M. Stein, Maximal functions and Fatou’s theorem, C.I.M.E. summer course on bounded homogeneous domains, Cremonese, 1967.