NEW SIMPLE LIE ALGEBRAS OF TYPE D_4

BY H. P. ALLEN1 AND J. C. FERRAR2

Communicated by G. D. Mostow, November 27, 1967

This brief note is to demonstrate the existence of a new class of (exceptional) Lie algebras of type D_4. The construction stems from a cyclic sixth degree extension P/Φ, together with an element γ of norm 1 in the unique cubic subfield F/Φ of P/Φ, where $\gamma \in N_{P/F}(P^*)$. Each such γ will determine a non-Jordan (see [1] for definition) Lie algebra $\mathfrak{g}(\gamma)$, of type D_4. Two algebras of this form, $\mathfrak{g}(\gamma)$ and $\mathfrak{g}(\rho)$, will be isomorphic if and only if γ differs from a conjugate of ρ by a norm in $N_{P/F}(P^*)$. The possibility of obtaining new D_4's from such a construction was first conjectured in [2].

We shall make free use of the well-known theory of finite Galois descent for nonassociative algebras and all the results which we use may be found in ([5, Chapter 10]).

0. Preliminaries. We assume without further mention that all fields which appear here have characteristic unequal to 2 or 3.

Let \mathfrak{H} be a split exceptional central simple Jordan algebra over P, \{e_1, e_2, e_3\} a set of supplementary orthogonal primitive idempotents and let $\mathfrak{D} = \mathfrak{H}(\mathfrak{Z}, Pe_e)$ be the subalgebra of the derivation algebra of \mathfrak{H} annihilating $\Sigma P e_e.$ Then \mathfrak{D} is the split D_4. If \mathfrak{g} is a Φ-algebra form of $\mathfrak{D}(P \supset \Phi)$, then we let \mathfrak{g}^* be the Φ-subalgebra of $\text{End}_P \mathfrak{g}$ generated by \mathfrak{g} (we view \mathfrak{g} as a Φ-subspace of \mathfrak{D} which contains a Φ-basis which is also a P-basis for \mathfrak{D}). It is known that $(\mathfrak{g}^*)_P \cong P_3 \oplus P_8 \oplus P_8$. \mathfrak{g} is special (i.e., has the form $\mathfrak{g}(\mathfrak{A}, J)$ where (\mathfrak{A}, J) is a central simple associative algebra of degree 8 with involution) if and only if \mathfrak{g}^* has proper ideals. When \mathfrak{g}^* is simple, i.e. when \mathfrak{g} is exceptional, then \mathfrak{g} is of known type—a Jordan D_4—if and only if \mathfrak{g}^* is a total matrix algebra over its center. \mathfrak{g} is of type D_{411} (D_{411}) if the center of \mathfrak{g}^* is a cyclic (noncyclic) extension of Φ.

If \mathfrak{g} is of type D_{411} and F is the center of \mathfrak{g}^*—the canonical D_{41}-field extension of \mathfrak{g}—then \mathfrak{g} is a non-Jordan D_{411} if and only if none of the simple components of $(\mathfrak{g}^*)_F$ is a total matrix algebra.

We shall need some technical information about the structure of split Cayley algebra. For this we refer to [6] and for convenience list the results below for reference.

1 This research was done while the author was a NATO postdoctoral research fellow at the Mathematics Institute, University of Utrecht.

2 On leave from Ohio State University.
NEW SIMPLE LIE ALGEBRAS OF TYPE D_4 479

Let \mathbb{C} be the vector space of all 2×2 matrices.

\[
\begin{pmatrix}
\alpha & a \\
\beta & b
\end{pmatrix}
\]

where $\alpha, \beta \in P$ and $a, b \in P^{(3)} = P \times P \times P$. \mathbb{C} is equipped with a bilinear multiplication and an involution, which are defined by

\[
\begin{pmatrix}
\alpha & a \\
\beta & b
\end{pmatrix}
\begin{pmatrix}
\gamma & c \\
\delta & d
\end{pmatrix} =
\begin{pmatrix}
\alpha \gamma + a \cdot d & \alpha c + \delta a - b \wedge d \\
\gamma b + \beta d + a \wedge c & \beta \delta + b \cdot c
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
\alpha & a \\
\beta & b
\end{pmatrix} =
\begin{pmatrix}
\beta & -a \\
-b & \alpha
\end{pmatrix}
\]

where $a \cdot d$ and $b \wedge d$ denote the usual dot and cross product in $P^{(3)}$. \mathbb{C} is a split Cayley algebra over P.

The mapping $x \mapsto xS = n(x) \in P \subset \mathbb{C}$ is a nondegenerate quadratic form of maximal Witt index, the generic norm on \mathbb{C}. If $\{e_1, e_2, e_3\}$ is the usual cartesian basis for $P^{(3)}$ and we define $u_i \in \mathbb{C}$ by

\[
u_i = \begin{pmatrix} 0 \\ e_i \\ 0 \end{pmatrix}, \quad u_{i+4} = -2 \begin{pmatrix} 0 \\ e_i \\ 0 \end{pmatrix}, \quad 1 \leq i \leq 3
\]

then u_1, \ldots, u_8 is a basis for \mathbb{C} where $n(u_i, u_j) = \delta_{i+4, j}$, $n(x, y)$ denoting the norm bilinear form of $n(x)$ with $i + 4$ taken modulo 8.

The multiplication table for \mathbb{C}, which is given in [6] for this basis, will be invaluable. (See p. 483.)

The product u_{i+4} is found in the ith-row, jth-column.

1. **Lemma 1.** Let \mathbb{C} be the split Cayley algebra over P and let $\gamma_1, \gamma_2, \gamma_3 \in P^*$ with $\gamma_1 \gamma_2 \gamma_3 \in (P^*)^3$. Then there exists a related triple (T_1, T_2, T_3) of proper similarities in \mathbb{C} where each T_i is selfadjoint with ratio γ_i. In particular, $(T_i)^3 = (\gamma_1, \gamma_2, \gamma_3)$.

Proof. (See [4] for the definition of related triples.) We take \mathbb{C} as in the preceding section and assume without loss of generality that $\gamma_1 \gamma_2 \gamma_3 = 1$. Let $T_i, i = 1, 2, 3$, be the linear transformation whose matrix T_i, with respect to u_1, \ldots, u_8, is given on the following page.
Using the fact that \(\{u_1, \cdots, u_4\}, \{u_5, \cdots, u_8\} \) span supplementary totally isotropic subspaces, it is easy to see that \(n(u_i, u_j T_k) = 0 \) if \(i \neq j \). This implies that each \(T_i \) is self adjoint. We have

\[
\begin{align*}
T_1 &= \begin{bmatrix}
0 & \frac{1}{2} \gamma_1 \\
2 & \frac{1}{2} \gamma_1 \\
\end{bmatrix} \\
T_2 &= \begin{bmatrix}
0 & \frac{1}{2} \gamma_2 \\
2 & \frac{1}{2} \gamma_2 \\
\end{bmatrix} \\
T_3 &= \begin{bmatrix}
0 & \frac{1}{2} \gamma_3 \\
2 & \frac{1}{2} \gamma_3 \\
\end{bmatrix}
\end{align*}
\]

Using the fact that \(\{u_1, \cdots, u_4\}, \{u_5, \cdots, u_8\} \) span supplementary totally isotropic subspaces, it is easy to see that \(n(u_i, u_j T_k) = 0 \) if \(i \neq j \). This implies that each \(T_i \) is self adjoint. We have

\[
\begin{align*}
n(u_i T_k, u_j T_k) &= 0 = n(u_i, u_j) \quad \text{if } j \neq i + 4 \pmod{8} \\
n(u_i T_k, u_{i+4} T_k) &= \gamma_k n(u_i, u_{i+4}) \quad 1 \leq i \leq 3 \\
n(u_4 T_k, u_8 T_k) &= -\gamma_2 \gamma_1 \gamma_8 n(u_4, u_8) = \gamma_k n(u_4, u_8) \quad \text{where the}
\end{align*}
\]

subscripts on the \(\gamma \)'s are taken modulo 3.
This shows that T_k is a similarity of ratio γ_k. To complete the proof we must show that

$$u_i u_j T_1 = \gamma_1(u_i T_2)(u_j T_3)$$

for all i, j.

By examining the multiplication table for the u's, we see that $u_i u_j = 0$ implies $(u_i T_2)(u_j T_3) = 0$. The remaining 32 cases are verified by straightforward computations. q.e.d.

The construction. Let P/Φ be a cyclic sixth degree Galois extension with F/Φ the cubic subfield of P/Φ, and let s be a generator for $\text{gal}(P/\Phi)$. Choose $\gamma \in F^*$ with $1 = N_{F/\Phi}(\gamma) = \gamma^2 \gamma^3$.

Take C_0 as the split Cayley algebra over Φ with basis $\{u_1, \ldots, u_8\}$ as described in §0 and let $C = C_0 [s]$ be the split Cayley algebra over P with basis $\{u_1, \ldots, u_8\}$. We let $T = (T_1, T_2, T_3)$ be the related triple of similarities in S constructed in Lemma 1 with the ingredients $\gamma, \gamma^3, \gamma^4$. Finally let S be the s-linear automorphism of C which fixes C_0. Let $\mathfrak{g} = \mathfrak{g}(C_0)$ and let $[\langle 123 \rangle, S]$ and $[1, T]$ be the transformations in $\Gamma L_8(3/\Sigma P e_i)$ as defined in [1, Equations 9 and 5].

Lemma 2. $[\langle 123 \rangle, S][1, T] = [1, T][\langle 123 \rangle, S]$.

Proof. We must show that $ST_1 = T_2 S, ST_2 = T_3 S$ and $ST_3 = T_1 S$. If we define $(\alpha_i)_* = (\alpha_i')$ in P, and if T_i denotes the matrix of T_i with respect to $\{u_1, \ldots, u_8\}$, then our conditions reduce to $T_1 = T_2^*, T_2 = T_3^*$ and $T_3 = T_1^*$. But this is immediate from the form of T_i given in Lemma 1.

Assume now that $\gamma \in F, F(P^*)$ (this assumption is nonvacuous over finite algebraic number fields) and let $C(\gamma)$ be the transformation $[\langle 123 \rangle, S][1, T]$ in $\mathfrak{g}(C_0)$. $C(\gamma)$ is s-linear and $C(\gamma)^0 = (\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = \gamma^2, \alpha_2 = (\gamma^3)\gamma$ and $\alpha_3 = (\gamma^4)\gamma$. It follows from this that conjugation by $C(\gamma)$ induces a pre-cocycle of $\text{gal}(P/\Phi)$ in $\text{Aut}_s \mathfrak{g}, \mathfrak{g} = \mathfrak{g}(3/\Sigma P e_i)$, and hence fixes a Φ-form, say $\mathfrak{g}(\gamma)$. $\mathfrak{g}(\gamma)$ is clearly of type D_{41} with F/Φ as its canonical D_{41}-field extension. Since the division algebra parts of the simple ideals of $\mathfrak{g}(\gamma)_P$ are the cyclic algebras $(P/F, \gamma^2), (P/F, (\gamma^3)^\gamma), (P/F, (\gamma^4)^\gamma)$ and $\gamma \in F, F(P^*)$, we see that $\mathfrak{g}(\gamma)$ is a non-Jordan D_{41}. Observe that the algebra $\mathfrak{g}(\gamma)$ is a twist of a Steinberg D_{41} and that this is precisely the situation conjectured at the end of [2].

Isomorphism conditions. Let P/Φ be as above. For any $\gamma \in F^*$ with $\gamma \gamma^* \gamma^8 = 1$, we can define the algebra $\mathfrak{g}(\gamma)$ as in the preceding. Writing down explicitly the condition for isomorphism between $\mathfrak{g}(\gamma)$ and $\mathfrak{g}(\rho)$ we obtain (in terms of descent)
\[A^{-1}C(\gamma)A(\mu_1, \mu_2, \mu_3) = C(\rho) \quad A \in GL(\mathfrak{S}/\Sigma \mathfrak{P}e_i), \quad \mu_i \in \mathfrak{P}^*. \]

In particular we see that \([(123), 1]C(\gamma)[(132), 1] = C(\gamma^*) \] so \(\mathfrak{L}(\gamma) \cong \mathfrak{L}(\gamma^*)\). More generally we have

Theorem. Let \(P/\Phi\) be cyclic sixth degree with \(F/\Phi\) the cubic sub-extension. If \(\gamma, \rho\) are elements of \(F\) of norm 1, then \(\mathfrak{L}(\gamma) \cong \mathfrak{L}(\rho)\) if and only if \(\mathfrak{L}(\gamma)^* \cong \mathfrak{L}(\rho)^*\) (as algebras without involution).

Proof. One direction is clear. For the other, the condition \(\mathfrak{L}(\gamma)^* \cong \mathfrak{L}(\rho)^*\) is equivalent to a relation of the form \(\rho = \gamma\lambda\lambda^*\) for some \(i, 0 \leq i \leq 2\). The preceding discussion enables us to assume that \(i = 0\), i.e. that \(\rho = \gamma\lambda\lambda^*\). Observe that \(N_{P/\Phi}(\lambda) = 1\) (take \(N_{P/\Phi}\) of both sides) and set \(\epsilon = \gamma(\lambda^*\lambda^*)^{-1}\). Then \(\epsilon \epsilon^* = 1\) and we let \(E\) be the related triple described by Lemma 1 for \(\epsilon\), \(\epsilon^*, \epsilon^{*^2}\). A straightforward calculation shows that

\[[1, E]^{-1}C(\gamma)[1, E]((\lambda\lambda^*)^{-1}, (\lambda^*\lambda^*)^{-1}, (\lambda\lambda^*)^{-1}) = C(\rho) \]

so \(\mathfrak{L}(\gamma) \cong \mathfrak{L}(\rho)\). q.e.d.

2. Special fields. As remarked above, our construction may be carried out over finite algebraic number fields. The results of [2] show that any \(D_{III}\) over such a field is split by a cyclic sixth degree extension \(P/\Phi\) and by a slight modification of the proof of Proposition 3 of [2] we may assume that \(P\) has no real primes. Let \(\mathfrak{L}\) be a non-Jordan \(D_{III}\) over \(\Phi\). Let \(\mathfrak{L}_\Phi\) (\(F\) as before) be the canonical \(D_{II}\) extension of \(\mathfrak{L}\). In the indicated reference it is also shown that \(\mathfrak{L}_\Phi\) is fixed under conjugation by a semilinear transformation \([1, (C_\gamma)]\) where \([1, (C_\gamma)]^2 = (\gamma^3, (\gamma^3)^3, (\gamma^3)^3), \gamma \in F, N_{P/\Phi}(\gamma) = 1\). Since \(\mathfrak{L}\) is a non-Jordan \(D_{III}\), \(\gamma \in N_{P/\Phi}(P^*)\).

Let \(\Delta = (P, t, \gamma^*)\), \(t = s^4\). Then \(\mathfrak{L}_\Phi\) has a realization as \(\mathfrak{K}(\Delta, J)\) which we can describe explicitly as follows:

Write \(\Delta = P + CP, C^2 = \gamma^3, \alpha C = C\alpha^4\), define a \(\Delta\)-module structure on \(\mathfrak{C}\) by setting \(x \cdot (\alpha + C\beta) = x\alpha + (xC\beta)\), and let \(-\) denote the involution \(\alpha + C\beta \rightarrow \alpha + C\beta^t\) in \(\Delta\). It follows from [3] that \(\mathfrak{L}_\Phi\) is isomorphic to the Lie algebra of all \(\Delta\)-linear transformations in \(\mathfrak{C}\) which are skew with respect to the nondegenerate-hermitian form

\[f(x, y) = n(x, y) + Cn(x, yC^{-1})^t \]

on \(\mathfrak{C}/\Delta\). In case \(\mathfrak{L} = \mathfrak{L}(\gamma)\), then \(\{u_1, u_2, u_3, u_4\}\) is an orthogonal basis for \(\mathfrak{C}/\Delta\) and we compute

\[f(u_i, u_i) = C_{\gamma^3}^i \quad 1 \leq i \leq 3 \]

\[f(u_4, u_4) = C_{\gamma^3}^4. \]
In a forthcoming paper, the first author has shown that f cannot have maximal Witt index. However, using the Hasse principle for hermitian forms of type D we conclude that f has Witt index 0 if and only if there is a real prime p on F with \mathfrak{p}_p the compact real D_4.

BIBLIOGRAPHY