Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Spherical functions on a $\mathfrak {p}$-adic Chevalley group
HTML articles powered by AMS MathViewer

by I. G. Macdonald PDF
Bull. Amer. Math. Soc. 74 (1968), 520-525
References
  • François Bruhat, Sur une classe du sous-groupes compacts maximaux des groupes de Chevalley sur un corps ${\mathfrak {p}}$-adique, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 45–74 (French). MR 179298, DOI 10.1007/BF02684310
  • 2. R. Godement, Introduction aux travaux de A. Selberg, Sém, Bourbaki 9 (1956-1957).
  • SigurÄ‘ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
  • N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
  • F. I. Mautner, Spherical functions over ${\mathfrak {P}}$-adic fields. I, Amer. J. Math. 80 (1958), 441–457. MR 93558, DOI 10.2307/2372794
  • IchirĂ´ Satake, Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 195863, DOI 10.1007/BF02684781
  • Tsuneo Tamagawa, On Selberg’s trace formula, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 363–386. MR 123633
Additional Information
  • Journal: Bull. Amer. Math. Soc. 74 (1968), 520-525
  • DOI: https://doi.org/10.1090/S0002-9904-1968-11989-5
  • MathSciNet review: 0222089