Almost everywhere convergence of Poisson integrals on generalized half-planes
Author:
Norman J. Weiss
Journal:
Bull. Amer. Math. Soc. 74 (1968), 533-537
DOI:
https://doi.org/10.1090/S0002-9904-1968-11996-2
MathSciNet review:
0222331
Full-text PDF Free Access
References | Additional Information
- S. Helgason and A. Korányi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc. 74 (1968), 258–263. MR 229179, DOI https://doi.org/10.1090/S0002-9904-1968-11912-3 2. A. Knapp, Fatou’s theorem for symmetric spaces. I, Mimeographed notes, Cornell Univ., Ithaca, N. Y., 1967.
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI https://doi.org/10.2307/1970645 4. A. Koranyi and E. M. Stein, Fatou’s theorem for generalized halfplanes, C.I.M.E. Summer Course on Bounded Homogeneous Domains, Cremonese, 1967.
- Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 174787, DOI https://doi.org/10.2307/1970616
- Norman J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc. 129 (1967), 283–307. MR 222330, DOI https://doi.org/10.1090/S0002-9947-1967-0222330-4 7. E. M. Stein, Maximal functions and Fatou’s theorem, C.I.M.E. Summer Course on Bounded Homogeneous Domains, Cremonese, 1967.