Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the intersections of cones and subspaces
HTML articles powered by AMS MathViewer

by A. Ben-Israel and A. Charnes PDF
Bull. Amer. Math. Soc. 74 (1968), 541-544
References
  • Adi Ben-Israel, Notes on linear inequalities. I. The intersection of the nonnegative orthant with complementary orthogonal subspaces, J. Math. Anal. Appl. 9 (1964), 303–314. MR 168368, DOI 10.1016/0022-247X(64)90045-9
  • A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667–699. MR 179192, DOI 10.1137/0111051
  • C. C. Braunschweiger and H. E. Clark, An Extension of the Farkas Theorem, Amer. Math. Monthly 69 (1962), no. 4, 272–277. MR 1531625, DOI 10.2307/2312940
  • C. C. Braunschweiger, An Extension of the Nonhomogeneous Farkas Theorem, Amer. Math. Monthly 69 (1962), no. 10, 969–975. MR 1531934, DOI 10.2307/2313191
  • N. Bourbaki, Eléments de mathématique. XV. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1189, Hermann & Cie, Paris, 1953 (French). MR 0054161
  • A. Charnes and W. W. Cooper, Management models and industrial applications of linear programming, John Wiley & Sons, Inc., New York-London, 1961. MR 0157773
  • Ky Fan, On systems of linear inequalities, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 99–156. MR 0087901
  • 8. K. Fan, Convex sets and their applications, Argonne National Laboratory Lecture notes, Argonne, Ill., summer 1959. 9. J. Farkas, Über die Theorie der einfachen Ungleichungen, J. Reine Angew. Math. 124 (1902), 1-24.
  • A. J. Goldman and A. W. Tucker, Polyhedral convex cones, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 19–40. MR 0087974
  • 11. L Hurwicz, "Programming in linear spaces, " Chapter 4 in: K. J. Arrow, L. Hurwicz and J. Uzawa, Studies in linear and nonlinear programming, Stanford Univ. Press, Stanford, Calif., 1958. 12. H. W. Kuhn and A. W. Tucker (Editors), Linear inequalities and related systems, Princeton Univ. Press, Princeton, N. J., 1956.
  • Norman Levinson, Linear programming in complex space, J. Math. Anal. Appl. 14 (1966), 44–62. MR 225569, DOI 10.1016/0022-247X(66)90061-8
  • N. Levinson and T. O. Sherman, The sum of the intersections of a cone with a linear subspace and of dual cone with orthogonal complementary subspace, J. Combinatorial Theory 1 (1966), 338–349. MR 205047, DOI 10.1016/S0021-9800(66)80056-X
  • 15. T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen (Dissertation, Basel, 1933) Azriel, Jerusalem, 1936.
  • R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 69793, DOI 10.1017/S0305004100030401
  • Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
  • A. W. Tucker, Dual systems of homogeneous linear relations, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 3–18. MR 0089112
Additional Information
  • Journal: Bull. Amer. Math. Soc. 74 (1968), 541-544
  • DOI: https://doi.org/10.1090/S0002-9904-1968-12000-2
  • MathSciNet review: 0232183