An invariant for almost-closed manifolds
Author:
David L. Frank
Journal:
Bull. Amer. Math. Soc. 74 (1968), 562-567
DOI:
https://doi.org/10.1090/S0002-9904-1968-12010-5
MathSciNet review:
0222906
Full-text PDF Free Access
References | Additional Information
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI https://doi.org/10.1016/0040-9383%2866%2990004-8 2. D. Frank, The piecewise linear J-homomorphism and the smoothing problem, Notices Amer. Math. Soc. 13 (1966), 848. 3. D. Frank, Reducible Thom complexes and the smoothing problem, Ph. D. Thesis, University of California, Berkeley, Calif., 1967.
- I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115–140. MR 102810, DOI https://doi.org/10.1112/plms/s3-9.1.115
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI https://doi.org/10.1090/S0273-0979-2015-01504-1
- Mark Mahowald, On the order of the image of $J$, Topology 6 (1967), 371–378. MR 212798, DOI https://doi.org/10.1016/0040-9383%2867%2990024-9
- John Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962–972. MR 110107, DOI https://doi.org/10.2307/2372998 8. D. Sullivan, Triangulating homotopy equivalences, mimeo. notes, Warwick, 1966.
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217