Diffraction by a hyperbolic cylinder
Author:
Clifford O. Bloom
Journal:
Bull. Amer. Math. Soc. 74 (1968), 587-589
DOI:
https://doi.org/10.1090/S0002-9904-1968-12020-8
MathSciNet review:
0225542
Full-text PDF Free Access
References | Additional Information
- Joseph B. Keller, Diffraction by a convex cylinder, Div. Electromag. Res., Inst. Math. Sci., New York Univ., Res. Rep. EM-94 (1956), 10 pp. Also: Trans. I.R.E. AP–4 (1956), 312–321. MR 94121 2. C. O. Bloom, Diffraction by a hyperbola, University Microfilms 26(1965), #65-6793, 384.
- F. Ursell, Creeping modes in a shadow, Proc. Cambridge Philos. Soc. 64 (1968), 171–191. MR 219276, DOI https://doi.org/10.1017/s0305004100042699
- Bertram R. Levy, Diffraction by an elliptic cylinder, J. Math. Mech. 9 (1960), 147–165. MR 0116866, DOI https://doi.org/10.1512/iumj.1960.9.59009
- H. M. Nussenzveig, High-frequency scattering by an impenetrable sphere, Ann. Physics 34 (1965), 23–95. MR 189455, DOI https://doi.org/10.1016/0003-4916%2865%2990041-2 6. J. B. Keller and B. R. Levy, Decay exponents and diffraction coefficients for surface waves on surfaces of nonconstant curvature, I.R.E. Trans. Ap-7 (1959), Special Supplement.