On the representation theorem of scattering
HTML articles powered by AMS MathViewer
References
- J. L. B. Cooper, One-parameter semigroups of isometric operators in Hilbert space, Ann. of Math. (2) 48 (1947), 827–842. MR 27129, DOI 10.2307/1969382
- Paul R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112. MR 152896, DOI 10.1515/crll.1961.208.102
- G. Kallianpur and V. Mandrekar, Semi-groups of isometries and the representation and multiplicity of weakly stationary stochastic processes, Ark. Mat. 6 (1966), 319–335 (1966). MR 203790, DOI 10.1007/BF02590961
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Bull. Amer. Math. Soc. 70 (1964), 130–142. MR 167868, DOI 10.1090/S0002-9904-1964-11051-X
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- P. Masani, Shift invariant spaces and prediction theory, Acta Math. 107 (1962), 275–290. MR 140930, DOI 10.1007/BF02545791
- P. Masani, Isometric flows on Hilbert space, Bull. Amer. Math. Soc. 68 (1962), 624–632. MR 145356, DOI 10.1090/S0002-9904-1962-10878-7
- P. Masani and J. Robertson, The time-domain analysis of a continuous parameter weakly stationary stochastic process, Pacific J. Math. 12 (1962), 1361–1378. MR 149562, DOI 10.2140/pjm.1962.12.1361
- Ja. G. Sinaĭ, Dynamical systems with countable Lebesgue spectrum. I, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 899–924 (Russian). MR 0148852
Additional Information
- Journal: Bull. Amer. Math. Soc. 74 (1968), 618-624
- DOI: https://doi.org/10.1090/S0002-9904-1968-12037-3
- MathSciNet review: 0223933