GERŠGORIN THEOREMS BY HOUSEHOLDER'S PROOF

BY J. L. BRENNER

Communicated by I. Reiner, December 11, 1967

0. The method. Given an \(m \times m \) matrix \(A = [a_{ij}] \) of complex numbers, S. Geršgorin [4] proved that every proper value \(\lambda \) lies in the union of the \(m \) disks \(D_i \), where

\[
D_i = \{ \lambda \mid |\lambda - a_{ii}| < R_i, \quad R_i = \sum_{j \neq i} |a_{ij}| \}\.
\]

Generalizations of this theorem have appeared in several papers, see for example [1], [3], [5], [7], [8], and a convenient summary in [6]. The theorem is derivable from the following (older) result, if we set \(B = A - \lambda I \).

Theorem 1. Let \(B = [b_{ij}] \) be a matrix of complex numbers. If \(B \) is not invertible, then for some \(i \) we must have \(|b_{ii}| \leq \sum_{j \neq i} |b_{ij}| = R_i\).

Corollary. \(\forall_i \{ |b_{ii}| > R_i \} \Rightarrow B \) is invertible.

This is the contrapositive of Theorem 1. To prove Theorem 1, find \(x = \{x_1, x_2, \ldots, x_n\} \) so that \(Bx = 0 \); choose \(i \) so that \(x_i \neq 0 \) and \(\forall_j \{ |x_i| \geq |x_j| \} \). Then \(|b_{ii}| \leq \sum_{j \neq i} |b_{ij}| \cdot |x_j/x_i| \leq R_i\).

Householder [5, p. 66] looks at the theorem from a different point of view. He writes \(B = D - C \), where \(D \) is the diagonal part of \(B \), i.e. \(D = [d_{ij}] \), \(d_{ii} = \delta_i \cdot b_{ii} \), and \(C \) has zero diagonal. If \(\forall_i \{ b_{ii} \neq 0 \} \), then \(B = D(I - D^{-1}C) \). The condition \(\|D^{-1}C\| < 1 \) guarantees that \(B \) be invertible. The corollary follows on applying this condition and using the row-sum norm.

1. A new result. In the preceding paragraph, a known result was recovered by Householder's method. This does not demonstrate the full power of the method. In this section, we obtain a new result by the same method. (This result can be obtained also by other methods; see [2].)

Definition. The notation

\[
B \left(\begin{array}{c} 1 \cdots n \\ 1 \cdots n \end{array} \right)
\]

means the minor matrix obtained from the large matrix \(B \) by retaining only rows \(1 \cdots n \) and columns \(1 \cdots n \). The notation

\[
B \left(\begin{array}{c} 1 \cdots n \\ \{1 \cdots n\} \setminus \{i, j\} \end{array} \right)
\]
means the minor matrix based on rows $1 \cdots n$ and columns $1 \cdots n$, but with column t omitted and column j ($j > n$) appended.

Lemma. Let c_{ik} be the i, k element of

$$W = B \begin{pmatrix} 1 \cdots n \\ 1 \cdots n \end{pmatrix}^{-1}.$$

Then

$$\left| \det \left\{ WB \begin{pmatrix} 1 \cdots n \\ \{1 \cdots n\} \setminus \{t, j\} \end{pmatrix} \right\} \right| = | \sum c_{ik} b_{kj} |.$$

Proof. The matrix product Q on the left side of the lemma is equal to the identity matrix except in the tth column, which is replaced by the jth column as shown. The determinant of Q is therefore equal to the t, t element of Q, i.e. the inner product of the tth row of W by the jth column of B.

Theorem 2. Let B be an $m \times m$ matrix of complex numbers; let $S(1)$, $S(2)$, \cdots be a partitioning of $\{1 \cdots m\}$ into disjoint sets. Let

$$V(r) = \begin{pmatrix} S(r) \\ S(r) \end{pmatrix}$$

be the (principal) submatrix of B on the rows and columns with indices in $S(r)$. Let

$$U(r, j, t) = A \begin{pmatrix} S(r) \\ S(r) \setminus \{j, t\} \end{pmatrix}$$

be the submatrix of B that uses rows with indices in $S(r)$, and columns with indices from the same set, but with the column of index j deleted and the column of index t appended.

The matrix B is nonsingular if the following m inequalities hold among certain minor determinants of B:

$$\forall_{j \in S(r)} \forall_{r} \left\{ | \det V(r) | > \sum_{t \in S(r)} | \det U(r, j, t) | \right\}.$$

Remark. If $S(i) = \{i\}$, this theorem reduces to the Geršgorin corollary.

Proof. We write $B = D - C = D(I - D^{-1}C)$ as before, but interpret D as the block diagonal $V(1) + V(2) + \cdots$ of B. If we apply the lemma (read from right to left) to the matrix $D^{-1}C$, and use row-sum norm in the condition $\|D^{-1}C\| < 1$, Theorem 2 follows.
Corollary. Every proper value of the matrix A lies in one or another of the m loci

$$
\left| \det \begin{pmatrix}
\lambda - a_{r,r} & a_{r,r+1} \\
a_{r+1,r} & \lambda - a_{r+1,r+1}
\end{pmatrix}\right| \leq \sum_{\delta \neq r, r+1} \left| \det \begin{pmatrix}
\lambda - a_{r,r} & a_{r,r+1} \\
a_{r+1,r} & \lambda - a_{r+1,r+1}
\end{pmatrix}\right|,
$$

$$
\left| \det \begin{pmatrix}
\lambda - a_{r,r} & a_{r,r+1} \\
a_{r+1,r} & \lambda - a_{r+1,r+1}
\end{pmatrix}\right| \leq \sum_{\delta \neq r} \left| \det \begin{pmatrix}
\lambda - a_{r,r} & a_{r,r+1} \\
a_{r+1,r} & \lambda - a_{r+1,r+1}
\end{pmatrix}\right|,
$$

$r = 1, 3, 5, \ldots, m-1$. (If m is odd, the last value of r is $m-2$, and the disk $|a_{mm}-\lambda| \leq R_m$ must be appended.)

This corollary has been used in numerical analysis, in a case in which complex numbers are replaced by 2×2 matrices.

References

Stanford Research Institute and University of British Columbia