A COMBINATION OF MONTE CARLO AND CLASSICAL METHODS FOR EVALUATING MULTIPLE INTEGRALS

BY SEYMOUR HABER

Communicated by E. Isaacson, February 29, 1968

1. Stochastic quadrature formulas. In the simplest "Monte Carlo" scheme for numerically approximating the integral

\[I = \int_{G} f(x) \, dx \]

\((G, \text{ is the closed unit cube in } E^d), N \text{ points } x_1, \ldots, x_N \text{ are chosen at random in } G, \text{ and the quantity}

\[J_0 = \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

is taken as an estimate of \(I \). The error analysis is probabilistic. Regarding the \(x_i \) as (pairwise) independent random variables uniformly distributed on \(G, J_0 \) is a random variable with mean \(I \); the amount by which it is apt to differ from \(I \) is estimated in terms of its standard deviation \(\sigma(J_0) \). In general (for \(f \in L^1(G) \)),

\[\sigma(J_0) = C_0(f) N^{-1/2}; \]

and it is usual to consider \(3\sigma \) (or even \(2\sigma \)) as a reliable upper bound on \(|J-I| \).

Let \(D^n \) denote the set of real functions \(f \) such that

\[\frac{\partial^{n_1+\cdots+n_s}}{(\partial x^1)^{n_1} \cdots (\partial x^s)^{n_s}} f(x^1, x^2, \ldots, x^s) \]

is continuous on \(G \) whenever \(n_1, n_2, \ldots, n_s \leq n \). N. S. Bahvalov [1], in a study of lower bounds on quadrature errors showed that for the class \(D^n \) the error of any nonrandom (e.g. Newton-Cotes, Gaussian) quadrature method is \(\Omega(N^{-n/s}) \); for random methods the best he could show was \(\sigma = \Omega(N^{-(n/s+1/2)}) \) and he showed that for the set of periodic functions in \(D^n \) there in fact exist methods for which \(\sigma = O(N^{-(n/(s+1/2))}) \).

In this note I shall give a general description of a class of formulas which combine the Monte Carlo and classical approaches to get

\[\sigma = \Omega(g) \iff g = O(f). \]

683
errors of the order of \(N^{-(n/2+1/2)} \) for the class \(D^n \), and construct some specific formulas of this class for the case \(n=2 \). A more complete development, and proofs, will appear elsewhere.

Definition. A "stochastic quadrature formula (s.q.f) of degree \(n \) (for \(G_s \))" is a set of 1-dimensional random variables \(A_1, \ldots, A_k \) and \(s \)-dimensional random variables \(X_1, \ldots, X_k \), such that

1. \(\sum_{i=1}^k A_i P(X_i) = \int_{G_s} P \) whenever \(P \) is a polynomial (in \(s \) variables) of degree \(n \) or lower; but there is a polynomial \(P^* \) of degree \(n+1 \) such that

\[
\sum_{i=1}^k A_i P^*(X_i) \neq \int_{G_s} P^*.
\]

2. \(m(\sum_{i=1}^k A_i f(X_i)) = \int_{G_s} f \) whenever \(f \in L^2(G_s) \) ("\(m(\cdot) \)" denotes the mean of a random variable).

For example, \(X_1 \) uniformly distributed over \(G_1 \), \(X_2 = (1/2, \ldots, 1/2) - X_1 \), and \(A_1 = A_2 = 1/2 \) define an s.q.f. of degree 1.

I shall write \(\sigma_Q(f) \) for \(\int A_i f(X_i) \), and speak of "the quadrature formula \(Q \)." In the usual way one may apply \(Q \) to any region \(A \) obtainable from \(G_s \) by an affine transformation, without changing its degree. The adapted formula will be denoted by "\(Q_A \)." I shall denote by "\(Q_M \)" the formula resulting from partitioning \(G_s \) into \(M \) congruent subcubes and applying \(Q \) to each. The number of function evaluations used in a quadrature formula will be denoted by "\(N \); for \(Q_M, N = kM \).

Theorem. If \(Q \) is a stochastic quadrature formula of degree \(n-1 \) and \(f \in D^n \), then

\[
\sigma(Q_M(f)) \sim C(f) N^{-(n/2+1/2)}
\]

where

\[
C(f) = \left(2^{n+s} n! \right)^{1/2} \left(\sum m_{ij} \int_{G_s} f(x_i)f(x_j) \right)^{1/2}.
\]

Here "\(f(N) \sim g(N) \)" means \(f(N)/g(N) \to 1 \) as \(N \to \infty \). The sum in (3) runs over all \(n \)-tuples \(i \) and \(j \) of integers between 1 and \(s \). The notations used are: If \(i = (i^1, i^2, \ldots, i^n), j = (j^1, \ldots, j^n) \), then

\[
f^{(i)} = \frac{\partial^n f}{\partial x^{i_1} \cdots \partial x^{i_n}}, \quad x^{(i)} = x^{i_1}x^{i_2} \cdots x^{i_n}
\]

and

\[
m_{ij} = m \left(\left(Q_A(x^i) - \int_A x^i \right) \left(Q_A(x^j) - \int_A x^j \right) \right)
\]
where \(A = A_s \) is the cube \(|x^i| \leq 1, i = 1, 2, \ldots, s \).

\(C(f) \) will rarely be known a priori; however, a good a posteriori estimate of \(\sigma(Q_M(f)) \) may be obtained by a modification of the calculation in the manner described in [3].

2. Formulas of degree 2. In [2] an s.q.f. \(Q \) of degree zero with \(k = 1 \) was investigated; in [3] one of degree 1 with \(k = 2 \) was given. For \(n \geq 2 \) the situation is more complicated; it is a consequence of a theorem of Stroud [4], that

\[
 k \geq \left\lceil \frac{n + s}{n/2} \right\rceil
\]

("\([\cdot]\)" denoting the greatest integer function), so that \(k \) cannot be independent of \(s \). For constant coefficient formulas we have

Theorem. If

\[
 Q(f) = \frac{1}{k} \sum_{i=1}^{k} f(X_i)
\]

is an s.q.f. of degree \(\geq 2 \) for \(G_s \), then \(k \geq 3s + 1 \).

Theorem. If \((a_{i,j})\) is a \((3s + 1) \times k\) real matrix such that

1. \(a_{i,j} = k^{-1/2} \) for all \(j \),
2. \(a_{i,1}^2 + a_{i,2}^2 + \cdots + a_{i,k}^2 = 1 \) for all \(i \),
3. \(a_{i,1}a_{i',1} + a_{i,2}a_{i',2} + \cdots + a_{i,k}a_{i',k} = 0 \) if \(i \neq i' \),
4. \(a_{i,j}^2 + a_{i+1,j}^2 + a_{i+s,j}^2 = 3/k \) for all \(j \) and for \(i = 2, 5, 8, \ldots, 3s - 1 \),

we shall denote by \(V_L \) \((L = 1, 2, \ldots, s)\) the subspace of \(\mathbb{R}^n \) spanned by the \((3L - 1)st, 3Lth, \) and \((3L + 1)st\) rows of \((a_{i,j})\) and by \(S_L \) the sphere of radius \((3/k)^{1/2}\) in \(V_L \), centered at the origin. Then if

\[
 X_j = (X_{j,1}, X_{j,2}, \ldots, X_{j,k}) \quad j = 1, 2, \ldots, k
\]

are random variables such that, for \(L = 1, 2, \ldots, s \),

\[
 (X_1^L, X_2^L, \ldots, X_k^L)
\]

is uniformly distributed on \(S_L \), then

\[
 Q(f) = \frac{1}{k} \sum_{i=1}^{k} f(X_i)
\]

is an s.q.f. of degree 2 for the cube \(A_s \).

It remains to be seen for which \(k \) such matrices exist; it is desirable that \(k \) be as low as possible. Here we have
THEOREM. If there exists a Hadamard matrix \([S], [6]\) of order \(r\), then for any \(s\) such that \(3s+1 \leq r\), there is a \((3s+1) \times r\) matrix \((a_{i,j})\) satisfying the conditions of the above theorem.

For the top row of the Hadamard matrix \(H_r\), may be taken to have all entries = 1; and then the first \(3s+1\) rows of \(r^{-1/2}H_r\) satisfy all conditions.

Since Hadamard matrices of order \(r = 4p\) are known to exist at least up to \(p = 29\), \(k\) can be taken \(\leq 3s+4\) for \(s \leq 38\); and can in fact be taken equal to \(3s+1\) for \(s = 1, 5, 9, \ldots, 33\).

The classical approaches to efficient quadrature have been: (1) To take advantage of as much smoothness as the integrand may have by constructing formulas of maximum degree using a fixed number of points; (2) To find formulas with a fixed number of points which minimize the error for functions with a given degree of smoothness. The second seems the more practical approach for functions of several variables, where smoothing is apt to be very difficult. With the present formulas, partitioning \(G_s\) reduces the error as quickly as possible for each fixed smoothness class \(D_s\); while the first approach continues in use, to reduce the number \(k\) in (3).

REFERENCES

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C.