A UNIFORM GENERALIZED SCHOENFLIES THEOREM

BY PERRIN WRIGHT

Communicated by O. G. Harrold, February 13, 1968

The generalized Schoenflies theorem of M. Brown [2], [3] can be restated in the following way: If S^{n-1} is the equator of S^n, then any locally flat embedding $f: S^{n-1} \to S^n$ can be extended to a homeomorphism $F: S^n \to S^n$.

The purpose of this paper is to show that, if $n \geq 5$, the extension F can be constructed in a controlled manner; in particular, if $f: S^{n-1} \to S^n$ is close to the inclusion embedding, then $F: S^n \to S^n$ can be chosen to be close to the identity homeomorphism. Consequently if, $f, g : S^{n-1} \to S^n$ are locally flat embeddings, $n \geq 5$, and f is close to g, then there is a homeomorphism $H: S^n \to S^n$ which is close to the identity such that $Hf = g$.

Let S^n denote the unit sphere in E^n, B^n the unit ball, and O the origin. If x, y belong to $E^n - O$, let $\theta(x, y)$ denote the angle in radians between the line segments Ox and Oy, measured such that $0 \leq \theta(x, y) \leq \pi$. The distance between x and y under the Euclidean metric will be denoted by $\text{dist}(x, y)$. If A is a subset of $E^n - O$, the angular diameter of A, written $\theta \text{ diam } A$, is defined to be $\sup_{x, y \in A} \theta(x, y)$. This is significant whenever A lies in a half-space.

Now suppose S is a locally flatly embedded $(n-1)$-sphere in E^n which approximates the standard sphere S^{n-1}. Suppose $\phi: S^{n-1} \times [0, 1] \to \text{Cl}(\text{Ext } S)$ is a collar on S in $\text{Cl}(\text{Ext } S)$. If the collar is small, then the θ-diameter of each fiber $\phi(x \times [0, 1])$ is also small. The object of Lemma 2 is to push the collar outward, leaving S fixed, so that its two boundary components are separated by a round sphere with center at O, and so that the θ-diameter of each fiber remains small. The precise statement is as follows.

Lemma 2. If $f: S^{n-1} \to E^n$, $n \geq 5$, is a locally flat embedding such that for all $x \in S^{n-1}$, $\theta(x, f(x)) < \epsilon$, where $\epsilon < \pi/7$, then there is an embedding $F: S^{n-1} \times [0, 1] \to \text{Cl}(\text{Ext } f(S^{n-1}))$ such that:

1. $F(x, 0) = f(x)$,
2. $F(S^{n-1} \times 0)$ and $F(S^{n-1} \times 1)$ are separated by some round sphere with center at O,
3. For all $x \in S^{n-1}, t \in [0, 1]$, $\theta(x, F(x, t)) < 13\epsilon/2 + 15\epsilon$.

1 Work on this paper was supported by the National Science Foundation under NSF G5458.
A UNIFORM GENERALIZED SCHOENFLIES THEOREM

The proof of Lemma 2 requires four auxiliary lemmas. We begin with a collar ϕ on $S = \phi(S^{n-1})$, and let $U = \phi(S^{n-1} \times (0, 1))$. Then U is an open subset of $\text{Ext} S$. We further assume $\theta(x, \phi(x, t)) < \epsilon$ for all x and t. Lemma A states that any complex in $\text{Ext} S$ can be pulled into U (in the sense of [1]) by a homotopy in $\text{Ext} S$ whose orbits have θ-diameter at most 9ϵ. Lemma B states that any complex in $\text{Ext} S$ can be disentangled from S, i.e., pulled into the exterior of some round sphere Σ outside S, by a homotopy in $\text{Ext} S$ whose orbits have θ-diameter less than 4ϵ. The condition that $\theta(x, \phi(x)) < \epsilon$ for all $x \in S^{n-1}$ insures that the "folds" in S are small, and hence any point of $\text{Ext} S$ may be moved into U or outside Σ along a path of small θ-diameter. The condition $\epsilon < \pi/7$ is a purely artificial one which makes the proofs work.

Lemmas 1A and 1B are radial engulfing lemmas. The engulfings proceed along the orbits of the homotopies guaranteed by Lemmas A and B. The proofs of these lemmas are almost identical to the proof of Engulfing Theorem A of [1], and their functions are comparable to those of Lemmas 1 and 2 of [5].

Finally, the proof of Lemma 2 is accomplished in the manner of Lemma 9.1 of [6].

If S_1 and S_2 are disjoint locally flat $(n-1)$-spheres in E^n, $S_1 \subset \text{Int} S_2$, and if there is a stable homeomorphism $h: E^n \to E^n$ such that $h(S_1) = S_2$, then S_1 and S_2 cobound an annulus (Theorem 10.3 of [4]). We next strengthen a special case of this theorem.

Let \bar{S} be a sphere concentric with S^{n-1}. Let x denote the point of \bar{S} which is coradial with $x \in S^{n-1}$. Introduce the following notation: if $y \in E^n - 0$ and L is a real number such that $||y||+L > 0$, then $y+L$ denotes the unique point of E^n which is coradial with y and has norm $||y||+L$.

If $f: S^{n-1} \to E^n$ and $\bar{f}: \bar{S} \to E^n$ are embeddings, we say that f and \bar{f} are parallel if there is a real number L such that for all $x \in S^{n-1}$, $f(x) = \bar{f}(x) + L$.

Clearly any two disjoint parallel spheres are stably equivalent, hence cobound an annulus. Lemma 3 states that this annulus can be coordinatized so that the θ-diameters of the fibers are directly proportional to the θ-deviation of f itself.

Lemma 3. Let \bar{S} be a sphere concentric with S^{n-1}, of radius less than 1. Let A be the annulus between \bar{S} and S^{n-1}. Let $0 < \epsilon < \pi/7$, and let $f: S^{n-1} \to E^n$, $n \geq 5$, be a locally flat embedding such that $\theta(x, f(x)) < \epsilon$ for all $x \in S^{n-1}$. Suppose $\bar{f}: \bar{S} \to \text{Int} f(S^{n-1})$ is an embedding which is parallel to f. Then there is an embedding $F: A \to E^n$ such that:
(1) \(F|_{S^{n-1}} = f \),
(2) \(F|_S = \tilde{f} \),
(3) \(\theta(y, F(y)) < (39/2)ne + 45\varepsilon \), for all \(y \in A \).

To prove Lemma 3, apply Lemma 2 to obtain an annulus in \(\text{Cl}(\text{Ext } f(S^{n-1})) \) which satisfies the conclusion of Lemma 2. Call this annulus \(R_1 \) and denote the annulus between \(f(S^{n-1}) \) and \(\tilde{f}(S) \) by \(R_2 \). Using the fact that \(\text{Int } R_1 \) contains a round sphere with center at \(O \), push \(R_1 \) onto \(R_1 \cup R_2 \) by a radial homeomorphism of \(E^n \). This does not alter the \(\theta \)-diameters of the fibers of \(R_1 \). Next, map \(R_1 \cup R_2 \) homeomorphically onto \(R_1 \) by utilizing the annular structure on \(R_1 \). This at worst triples the \(\theta \)-diameters of fibers. The result of these maps gives an annular structure on \(R_2 \) satisfying Lemma 3.

The main theorems.

Theorem 1. If \(n \geq 5 \), and \(f: S^{n-1} \to E^n \) is a locally flat embedding such that \(\theta(f(x), x) < \varepsilon \) and \(\text{dist}(f(x), x) < \varepsilon \) for all \(x \in S^{n-1} \), then \(f \) can be extended to an embedding \(F: B^n \to E^n \) such that \(\text{dist}(F(x), x) < 39ne/2 + 48\varepsilon \).

Corollary 1. For each \(\eta > 0 \), there is a \(\delta > 0 \) such that each locally flat \(\delta \)-embedding of \(S^{n-1} \) into \(E^n \), \(n \geq 5 \), can be extended to an \(\eta \)-embedding of \(B^n \) into \(E^n \).

The proof of Theorem 1 is outlined as follows. Partition \(B^n \) into annuli \(A_i \) of thickness \(2\varepsilon \) together with a small ball \(B_* \) in the center. Partition \(\text{Cl}(\text{Int } f(S^{n-1})) \) into annular regions \(R_i \) together with a small cell \(C \) about the origin, in such a way that each boundary sphere of each \(R_i \) is parallel to \(f(S^{n-1}) \) and the parallel distance between any two consecutive spheres (i.e., the constant \(L \) of the definition of parallel embeddings) is \(2\varepsilon \). Obtain a 1-1 correspondence between the \(A_i \) and the \(R_i \) by omitting the innermost \(A_i \) or \(R_i \), if necessary. Use Lemma 3 to map the outermost annulus \(A_0 \) homeomorphically onto the outermost region \(R_0 \). (We assume \(\varepsilon < \pi/7 \), for if not, Theorem 1 is certainly true.) Then it is possible to map each \(A_i \) onto the corresponding \(R_i \) by copying the map \(f|_{A_0} \). This procedure is well defined on \(A_i \cap A_{i+1} \), because of the parallel condition. Finally, map \(B_* \) homeomorphically onto \(C \) in any fashion, extending the map \(F|_{B_*} \).

For points \(y \in A_i \), \(\|y\| - \|F(y)\| < 3\varepsilon \) and \(\theta(y, F(y)) < (39/2)ne + 45\varepsilon \). Since \(\|y\| \leq 1 \), \(\text{dist}(y, F(y)) < (39/2)ne + 48\varepsilon \). For points \(y \in B_* \), no control is necessary because \(B_* \cup C \) has diameter less than \(7\varepsilon \).

Now consider \(S^{n-1} \) to be the equator of \(S^n \). Theorems 2 and 3 follow from Corollary 1.
Theorem 2. Let \(n \geq 5, \eta > 0 \). There is a \(\delta > 0 \) such that any locally flat \(\delta \)-embedding \(f: S^{n-1} \rightarrow S^n \) can be extended to a \(\eta \)-homeomorphism \(F: S^n \rightarrow S^n \).

Theorem 3. Let \(n \geq 5, \eta \geq 0 \). Let \(g: S^{n-1} \rightarrow S^n \) be any locally flat embedding. There exists a \(\delta > 0 \) such that if \(f: S^{n-1} \rightarrow S^n \) is any locally flat embedding satisfying \(\text{dist}(f(x), g(x)) < \delta \), then there is an \(\eta \)-homeomorphism \(H: S^n \rightarrow S^n \) such that \(Hf = g \).

These results, together with those of Connell [5] and Bing [1], can be used to show that the problem of approximating homeomorphisms of \(S^n, n \geq 5 \), by p.w.l. ones is equivalent to approximating locally flat embeddings of \((n-1)\)-spheres by p.w.l. ones.

References

Florida State University