THE COHOMOLOGICAL DIMENSION OF STONE SPACES

BY ROGER WIEGAND

Communicated by R. S. Pierce, April 10, 1968

The purpose of this note is to announce a few inequalities involving
the cohomological (sheaf-theoretic) dimension of locally compact,
totally disconnected Hausdorff spaces, herein called Stone spaces.
Throughout, R will denote a commutative regular ring with maximal
ideal space X. (Then X is compact and totally disconnected.) For
each ideal J in R let $U[J]$ denote the corresponding open subset of X,
and for each R-module A, let $\mathcal{G}(A)$ denote the corresponding sheaf of
modules, as defined in [2].

Theorem 1. $\text{Ext}^n_R(J, A)$ and $H^n(U[J]; \mathcal{G}(A))$ are naturally iso­

morphic.

Theorem 2. Let \mathcal{F} be a sheaf over the Stone space X, and let \mathcal{U} be a
covering of X consisting of compact open sets. Then the natural maps
$H^n(\mathcal{U}; \mathcal{F}) \to H^n(X; \mathcal{F}) \to H^n(X; \mathcal{F})$ are all isomorphisms.

Let $\dim X$ denote the cohomological dimension of X, and $\text{cov dim } X$
the covering dimension of X, based on arbitrary (not necessarily
finite) open coverings. (It is not hard to show that for Stone spaces,
$\text{cov dim } X \leq n$ iff X has a compact open cover of order n.) Finally,
let $\text{h-dim}_R J$ denote the homological (projective) dimension of
the ideal J.

Corollary. $\text{h-dim}_R J \leq \dim U[J] \leq \text{cov dim } U[J].$

Since the only projective R-modules are direct sums of principal
ideals [1], we see that $\text{h-dim}_R J = 0$ iff $\text{cov dim } U[J] = 0$, and, by
the corollary, iff $\dim U[J] = 0$. In order to see that equality need not
always hold in the corollary, let us define the rank ρ of a space X by
agreeing that $\rho(X) \leq n$ iff X can be written as a union of \mathbb{N}_n (or fewer)
compact sets.

Theorem 3. For any Stone space X, $\dim X \leq \rho(X)$.

Example 1. Let Ω be the set of countable ordinals, with the order
topology. Then $\dim \Omega = 1$, but $\text{cov dim } \Omega = \infty$. (The second assertion
may be verified directly; the first then follows from Theorem 3 and
the remarks following the corollary.)

The next example shows that the inequality in Theorem 3 cannot
be sharpened.
EXAMPLE 2. For each $n \geq 0$, let X_n be the product of n copies of a two-point space, with a single point deleted. Then $\dim X_n = \rho(X_n) = n$. (Pierce [3] has shown that the corresponding maximal ideal in the free Boolean ring on \aleph_n generators has homological dimension n. Therefore $\dim X_n = n$, by Theorem 3 and the corollary.)

EXAMPLE 3. Let A_0 (resp. A_1) be the one-point compactification of a discrete space of cardinality \aleph_0 (resp. \aleph_1). Let $X = A_0 \times A_1 \setminus \{(*, *)\}$. Then $\dim X = \text{cov dim } X = \rho(X) = 1$. (In fact, it can be shown that $H^1(X; \mathbb{Z}_2) \neq 0$, where \mathbb{Z}_2 denotes the constant 2-sheaf.)

I do not know whether the identity $\dim X = \text{cov dim } X = n$ can be realized in general. (The space X_n of Example 2 has infinite covering dimension.) An obvious generalization of Example 3 yields a space with rank and covering dimension n, but with unknown cohomological dimension. Also, I know of no example in which $h \cdot \text{dim}_R J < \dim U[J]$. Notice that if one could show that $h \cdot \text{dim}_R J$ and $\dim U[J]$ are always equal, then it would follow that any two commutative regular rings with homeomorphic maximal ideal spaces have the same global dimension.

REFERENCES

UNIVERSITY OF WISCONSIN