Differentiably simple algebras
HTML articles powered by AMS MathViewer
- by Richard E. Block PDF
- Bull. Amer. Math. Soc. 74 (1968), 1086-1090
References
- A. A. Albert, On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. 74 (1953), 323–343. MR 52409, DOI 10.1090/S0002-9947-1953-0052409-1
- Laurence R. Harper Jr., On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63–72. MR 130250, DOI 10.1090/S0002-9947-1961-0130250-3
- G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677–694. MR 7009, DOI 10.2307/2371713
- Edward C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc. 11 (1960), 337–343. MR 113908, DOI 10.1090/S0002-9939-1960-0113908-6
- Irving Kaplansky, Lie algebras, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 115–132. MR 0178097
- A. I. Kostrikin, Squares of adjoined endomorphisms in simple Lie $p$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 445–487 (Russian). MR 0218415
- George B. Seligman, Characteristic ideals and the structure of Lie algebras, Proc. Amer. Math. Soc. 8 (1957), 159–164. MR 82974, DOI 10.1090/S0002-9939-1957-0082974-9 8. H. Zassenhaus, Über Lie’sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg 13 (1939), 1-100.
- A. Sagle and D. J. Winter, On homogeneous spaces and reductive subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142–147. MR 227325, DOI 10.1090/S0002-9947-1967-0227325-2
Additional Information
- Journal: Bull. Amer. Math. Soc. 74 (1968), 1086-1090
- DOI: https://doi.org/10.1090/S0002-9904-1968-12056-7
- MathSciNet review: 0231867