STRONGLY NEGLIGIBLE SETS IN
FRÉCHET MANIFOLDS

BY R. D. ANDERSON

Communicated August 9, 1968

Let \(s \) denote the linear metric space which is the countable infinite product of lines. It is known \([1]\) that \(s \) is homeomorphic to Hilbert space \(l_2 \) and, in light of \([8]\) and \([10]\), to all separable infinite-dimensional Fréchet spaces (and therefore, of course, to all such Banach spaces). We define a Fréchet manifold or \(F \)-manifold to be a separable metric space which admits an open cover by sets homeomorphic to open subsets of \(s \). Banach manifolds, which may be similarly defined, have been studied by a number of authors. From the results cited above it follows that all separable metric Banach manifolds modeled on separable infinite-dimensional Banach spaces are, in fact, \(F \)-manifolds. Also, clearly, any open subset of an \(F \)-manifold is an \(F \)-manifold.

In this paper, we are concerned with homeomorphisms of \(F \)-manifolds onto dense subsets of themselves. The first result of the type we consider was due to Klee \([11]\), who showed that for any compact set \(K \) in \(l_2 \), \(l_2 \) is homeomorphic to \(l_2 \setminus K \). Recently, there have been a number of results \([2]\), \([3]\), \([4]\), \([5]\), \([7]\), \([13]\), etc., showing that for various types of subsets \(K \) of certain linear metric spaces \(X \), \(X \) is homeomorphic to \(X \setminus K \). Bessaga \([7]\) introduced the term "negligible" for such sets \(K \). In some cases \(K \) was assumed compact, in others \(\sigma \)-compact (i.e. the countable union of compact sets) and in others \(K \) was assumed to be the countable union of closed sets of infinite deficiency (i.e. of infinite codimension). Indeed several different geometric methods \([2]\), \([3]\), \([5]\), \([7]\), \([11]\) have been used to establish negligibility in various spaces. The results that \(\sigma \)-compact subsets of \(l_2 \) and of \(s \) are negligible were used in the proofs \([1]\) and \([5]\) that \(l_2 \) is homeomorphic to \(s \). Questions of negligibility of subsets in Fréchet and Banach manifolds have also arisen. Where differentiable structures are assumed as for Banach spaces and manifolds and \(K \) is assumed closed, Bessaga \([7]\), Corson, Eells and Kuiper \([9]\), Kuiper and Burghelea \([12]\), Moulis \([13]\), Renz \([15]\) and West have investigated conditions under which \(X \) and \(X \setminus K \) are diffeomorphic.

\(^1\) This research was supported in part under NSF Grant GP 6867. A manuscript giving detailed arguments for Theorems I to V is in preparation.
or they have used results of this type in other work. However, the results being announced in this paper are concerned only with homeomorphisms, not with diffeomorphisms.

In [6], Henderson, West, and the author introduced the concept of strong negligibility and characterized the strongly negligible closed subsets of an F-manifold. A subset K of a space X is \textit{strongly negligible} if for any open cover G of X there exists a homeomorphism h of X onto $X \setminus K$ such that h is limited by G, i.e., for any $p \in X$ there exists $g \in G$ such that both p and $h(p)$ are elements of g.

A similar concept related to the metric of a space is the concept of metric negligibility. A set K in a metric space X is \textit{metrically negligible} in X if for each $\varepsilon > 0$, there exists a homeomorphism h of X onto $X \setminus K$ such that h moves no point more than ε. Clearly, in a metric space X, strong negligibility of a set K implies metric negligibility since we may select an open cover of X of mesh less than ε. It is nontrivial, but follows from Theorem I below that, in an F-manifold, metric negligibility of a set K implies strong negligibility of K.

Following [4], a closed set K has \textit{Property Z} in a space X if for each nonnull homotopically trivial open set U in X, $U \setminus K$ is nonnull and homotopically trivial. (A set U is homotopically trivial if every map of an n-sphere S^n, $n \geq 0$, into U can be extended to a map into U of an $(n+1)$-ball bounded by S^n.) In a sense, Property Z is "trivial homotopy negligibility." See [9] for a similar point-of-view.

The following theorem is proved in [6].

\textbf{Theorem 0.} A closed set K in an F-manifold X is strongly negligible \iff{} K has Property Z.

It should be noted that every compact set in an F-manifold X has Property Z in X, that every closed set of infinite deficiency in s or in a separable metric Banach space has Property Z in such space, and that every closed set which is a countable union of closed sets with Property Z in an F-manifold X has Property Z in X.

The principal result of this paper is the following theorem.

\textbf{Theorem I.} A set K in an F-manifold X is strongly negligible (or metrically negligible) in X \iff{} K is a countable union of closed sets with Property Z in X.

Theorem I includes, as special cases or easy corollaries, Theorem 0 and many or all of the previous results on negligibility in F-manifolds X under homeomorphisms of X onto dense subsets of itself.

The proof of necessity in Theorem I is fairly straightforward. We do not outline it here.
The proof of sufficiency depends heavily on the canonical compactification of \(s \) as the Hilbert cube \(I^\infty \) in which \(s \) is regarded as a product of open intervals and the Hilbert cube is regarded as the product of the closures of the open intervals. Thus \(I^\infty = \prod_{j>0} I_j \) and \(s = \prod_{j>0} I_j^\circ \) where for each \(j>0, I_j = [-1, 1] \) and \(I_j^\circ = (-1, 1) \). We let \(B(I^\infty) \) denote \(I^\infty \setminus s \). A set \(K \subseteq I^\infty \) is an apparent boundary of \(I^\infty \) if there exists a homeomorphism \(h \) of \(I^\infty \) onto \(I^\infty \) such that \(h(K) = B(I^\infty) \).

In [6], a rather general procedure for reducing certain homeomorphism problems on \(F \)-manifolds to homeomorphism problems on the Hilbert cube or on \(s \) itself is given. The actual homeomorphism theorems on \(I^\infty \) and \(s \) that are needed in [6] can be found in [2], [4], [5]. While we use the general procedures of [6] (with slight modifications) to establish sufficiency in Theorem I, we also use the following new homeomorphism theorem about \(I^\infty \).

Theorem II. Let \(I^\infty \supseteq K \supseteq B(I^\infty) \). Then \(K \) is an apparent boundary of \(I^\infty \) iff \(K \) is a countable union of closed sets with Property \(Z \) in \(I^\infty \).

In effect, Theorem II characterizes those apparent boundaries of \(I^\infty \) which contain \(B(I^\infty) \).

The sufficiency statement of Theorem II can be used to prove the somewhat stronger Theorem II A below, which is in a form more readily adaptable for application to \(F \)-manifolds. An endslice of \(I^\infty \) is a set \(W \) such that for some \(i>0, W = \{ (x_j) \in I^\infty | x_i = 1 \text{ (or } -1) \} \).

Theorem II A. Let \(W^* \) be a finite union of endslices in \(I^\infty \), let \(\varepsilon > 0 \), and let \(K \) be a countable union of closed sets with Property \(Z \) in \(I^\infty \) such that \(K \cap W^* = \emptyset \). Then there exists a homeomorphism \(h \) of \(I^\infty \) onto \(I^\infty \) such that \(h \mid W^* = \text{identity}, h(s \setminus K) = s, \) and \(h \) moves no point more than \(\varepsilon \).

The “bridge” between Property \(Z \) in \(s \) and Property \(Z \) in \(I^\infty \) is given by the statement, proved in [4], that for any closed set \(K \) in \(s \) with Property \(Z \) in \(s \), \(\text{Cl } K \) in \(I^\infty \) has Property \(Z \) in \(I^\infty \).

Outline of the Proof of Theorem II. Since an endslice in \(I^\infty \) has Property \(Z \) in \(I^\infty \), \(B(I^\infty) \) is a countable union of closed sets with Property \(Z \) in \(I^\infty \). Hence necessity follows immediately. We shall reduce the proof of sufficiency to three elementary but nontrivial theorems whose formulations require some additional definitions.

A core is a set \(C = \prod_{j>0} J_j \) where for each \(j>0, J_j \) is a closed interval contained in \(I_j^\circ \). A basic core set \(M \) structured on a core \(C = \prod_{j>0} J_j \) is defined as \(M = \{ (x_j)_{j>0} \in s \mid \text{for all but finitely many } j, x_j \in J_j \} \). A core set is a subset of \(s \) which is \(\sigma \)-compact and contains a basic core set. It is easy to verify that a basic core set is a core set.

Theorem III. Every core set is an apparent boundary of \(I^\infty \).
Theorem IV. For any basic core set M there is a homeomorphism g of I^∞ onto I^∞ such that $g(M) = B(I^\infty)$, and $g \circ g$ is the identity.

Theorem V. For any set $K \subseteq I^\infty$ which is the countable union of closed sets with Property Z in I^∞, there exist a homeomorphism f of I^∞ onto I^∞ and a basic core set M such that $f(K) \cap M = \emptyset$, and $f(B(I^\infty)) = B(I^\infty)$.

Theorems III and IV can be proved by a more delicate argument than that outlined in [4] for the proof of Theorem 11.1 there, together with selected apparatus like that found in [2]. Theorem V can be proved rather routinely from Lemma 6.1 of [4]. We now give a short proof of sufficiency for Theorem II based on Theorems III, IV, and V.

Proof of Sufficiency for Theorem II. Let K be as in the hypothesis. Let f be as in Theorem V, and g be as in Theorem IV. Let, by Theorem III, h carry $g \circ f(K)$ onto $B(I^\infty)$. Then $h \circ g \circ f$ is the desired homeomorphism.

Bibliography

Louisiana State University, Baton Rouge, Louisiana 70803

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use