On polynomials and almost-primes
Author:
G. J. Rieger
Journal:
Bull. Amer. Math. Soc. 75 (1969), 100-103
DOI:
https://doi.org/10.1090/S0002-9904-1969-12159-2
MathSciNet review:
0233783
Full-text PDF Free Access
References | Additional Information
- 1. N. C. Ankeny and H. Onishi, The general sieve, Acta Arith 10 (1964/1965), 31–62. MR 0167467, https://doi.org/10.4064/aa-10-1-31-62
- 2. E. Bombieri, On the large sieve, Mathematika 12 (1965), 201–225. MR 197425, https://doi.org/10.1112/S0025579300005313
- 3. A. A. Buchstab, A combinatorital strengthening of the Eratosthenes sieve method, Russian Math. Surveys 22 (1967), 205-233.
- 4. W. B. Jurkat and H.-E. Richert, An improvement of Selberg’s sieve method. I, Acta Arith. 11 (1965), 217–240. MR 202680, https://doi.org/10.4064/aa-11-2-217-240
- 5. B. V. Levin, A one-dimensional sieve, Acta Arith. 10 (1964/65), 387–397 (Russian). MR 180540
- 6. R. J. Miech, Primes, polynomials and almost primes, Acta Arith. 11 (1965), 35–56. MR 179139, https://doi.org/10.4064/aa-11-1-35-56
- 7. W. Schaal, Obere und untere Abschätzungen in algebraischen Zahlkörpern mit Hilfe des linearen Selbergschen Siebes, Acta Arith 13 (1967/1968), 267–313 (German). MR 0222047, https://doi.org/10.4064/aa-13-3-267-313
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1969-12159-2