Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Ensembles et morphismes stratifiés
HTML articles powered by AMS MathViewer

by R. Thom PDF
Bull. Amer. Math. Soc. 75 (1969), 240-284
References
  • W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017–1028. MR 189046, DOI 10.2307/2373259
  • 2. S. Łojasiewicz, Ensembles semi-analytiques, Cours Faculté des Sciences d’Orsay, Mimeographié I.H.E.S., Bures-sur-Yvette, July, 1965.
  • John N. Mather, Stability of $C^{\infty }$ mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89–104. MR 232401, DOI 10.2307/1970595
  • René Thom, La stabilité topologique des applications polynomiales, Enseign. Math. (2) 8 (1962), 24–33 (French). MR 148079
  • R. Thom, Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London, 1964, pp. 191–202. MR 0195102
  • Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244. MR 0188486
  • J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57. MR 231390, DOI 10.1007/BF02684585
Additional Information
  • Journal: Bull. Amer. Math. Soc. 75 (1969), 240-284
  • DOI: https://doi.org/10.1090/S0002-9904-1969-12138-5
  • MathSciNet review: 0239613