Cross sectionally continuous spheres in $E^3$
HTML articles powered by AMS MathViewer
- by L. D. Loveland PDF
- Bull. Amer. Math. Soc. 75 (1969), 396-397
References
-
1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
2. R. H. Bing, Topology Seminar, Wisconsin, 1965, Ann. of Math. Studies No. 60, Princeton Univ. Press, Princeton, N. J., p 82.
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33β45. MR 160194 4. J. W. Cannon, Characterization of taming sets on 2-spheres, Notices Amer. Math. Soc. 15 (1968), 768.
- W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375β378. MR 239600, DOI 10.1090/S0002-9904-1969-12180-4
- Norman Hosay, A proof of the slicing theorem for $2$-spheres, Bull. Amer. Math. Soc. 75 (1969), 370β374. MR 239599, DOI 10.1090/S0002-9904-1969-12178-6 7. R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. 14 (1928), 85-88.
Additional Information
- Journal: Bull. Amer. Math. Soc. 75 (1969), 396-397
- DOI: https://doi.org/10.1090/S0002-9904-1969-12191-9
- MathSciNet review: 0239601