Ramsey’s theorem for $n$-dimensional arrays
HTML articles powered by AMS MathViewer
- by R. L. Graham and B. L. Rothschild PDF
- Bull. Amer. Math. Soc. 75 (1969), 418-422
References
- A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229. MR 143712, DOI 10.1090/S0002-9947-1963-0143712-1
- A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 0046372
- R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. (2) 48 (1943), 122–160. MR 9007, DOI 10.1112/plms/s2-48.1.122 4. B. L. Rothschild, A generalization of Ramsey’s theorem and a conjecture of Rota, Doctoral Dissertation, Yale University, New Haven, Conn., 1967.
- Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048, DOI 10.5948/UPO9781614440147 6. J. Sanders, A generalization of a theorem of Schur, Doctoral Dissertation, Yale University, New Haven, Conn., 1968. 7. I. Schur, Über die Kongruenz x+y=z (mod p), Jahr. Deutsch. Math.-Verein. 25 (1916), 114.
Additional Information
- Journal: Bull. Amer. Math. Soc. 75 (1969), 418-422
- DOI: https://doi.org/10.1090/S0002-9904-1969-12202-0
- MathSciNet review: 0237349