4. B. L. Rothschild, A generalization of Ramsey's theorem and a conjecture of Rota, Doctoral Dissertation, Yale University, New Haven, Conn., 1967.

5. H. J. Ryser, Combinatorial mathematics, Wiley, New York, 1963.

6. J. Sanders, A generalization of a theorem of Schur, Doctoral Dissertation, Yale University, New Haven, Conn., 1968.

7. 1. Schur, Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahr. Deutsch. Math.-Verein. 25 (1916), 114.

BELL TELEPHONE LABORATORIES, MURRAY HILL, NEW JERSEY 07974 AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS

02139

DECOMPOSITIONS OF E³ INTO POINTS AND COUNTABLY MANY TREES

BY ARLO W. SCHURLE

Communicated by R. H. Bing, October 28, 1968

In this paper G always denotes a monotone decomposition of E^3 , i.e., an upper semicontinuous decomposition into compact connected sets. H_G denotes the set of nondegenerate elements of G, and E^3/G denotes the quotient space of E^3 associated with G. "Homeomorphism" will mean "homeomorphism of E^3 onto itself." If f is a homeomorphism, then $fG = \{f(g) \mid g \in G\}$ and $fG(X) = \bigcup \{f(g) \in fG \mid f(g) \text{ meets}$ $X\}$. Also, $S(X, r) = \{p \in E^3 \mid d(p, X) < r\}$, where d is the usual metric.

The purpose of this paper is to outline some results leading to a proof of the following theorem. Details will be published elsewhere.

THEOREM 1. If H_G is countable and each element of H_G is a tree consisting of tame arcs, then E^3/G is topologically E^3 .

Recall that a tree is a space homeomorphic to a finite connected one-dimensional simplicial complex containing no simple closed curves. "Consisting of tame arcs" means that each arc of the tree corresponding to a one-simplex is tame. An example given by Fox and Artin [3, p. 987] shows that this condition on a tree is weaker than requiring the tree to be tame.

Theorem 1 extends a result of Bing [2, Theorem 3, p. 370] and answers a question posed by Armentrout [1, p. 5]. Theorem 2 of this paper is the main tool used in the proof of our main result. The methods used to prove Theorem 2 are analogous to those used by McAuley in [4, pp. 444-454].

DEFINITION. Let b be a point of a compact set B in E^3 . B is said to be shrinkable to near b with respect to G if given any open set U containing $B \setminus \{b\}$ and any positive number ϵ , there is a homeomor1969]

phism h such that

- (1) $h = \operatorname{Id} \operatorname{on} E^3 \setminus U$,
- (2) $h(B) \subset S(b, \epsilon)$,
- (3) for each $g \in G$ either diam $h(g) < \epsilon$ or $h(g) \subset S(g, \epsilon)$.

The following rather technical lemma essentially says that if B is shrinkable to near b with respect to G and h is a homeomorphism, then there is another homeomorphism f agreeing with h except on a small set and shrinking B to very small size, all without disturbing elements of hG too much. The proof is quite routine.

LEMMA 1. Let b be a point of a compact set B such that B is shrinkable to near b with respect to G. Let δ and ϵ be positive numbers and h a homeomorphism satisfying

(1) for each $g \in G$ either diam $h(g) < \delta$ or $h(g) \subset S(g, \delta)$,

(2) $h(B) \subset U$ and $hG(\overline{U}) \subset V$, where U, V are given open sets,

(3) $h(B \setminus \{b\}) \subset 0$, where 0 is a given open set, and

(4) $h = \text{Id on } E^3 \setminus Q$, where Q is a given bounded open set.

Then there is a homeomorphism f satisfying

- (a) for each $g \in G$ either diam $f(g) < \delta + \epsilon$ or $f(g) \subset S(g, \delta + \epsilon)$,
- (b) $fG(\overline{U}) \subset V$,
- (c) f = h on $E^3 \setminus (h^{-1}(0 \cap U) \cap Q)$, and
- (d) $f(B) \subset S(h(b), \epsilon)$.

THEOREM 2. Let g_0 be an element of G which is the union of compact sets B_0 , B_1 and A, where $B_0 \cap B_1 = \Phi$, $B_i \cap A = \{b_i\}$ (i=0, 1), and A is a tame arc joining b_0 and b_1 . If B_1 is shrinkable to near b_1 with respect to G, then $B_1 \cup A$ is shrinkable to near b_0 with respect to G.

OUTLINE OF PROOF. Since A is tame it is easy to see that we need only consider the case in which A is a straight line segment. Also, by applying a homeomorphism which pushes things away from A, we may suppose that A is the axis of a solid cylinder T, where $T \cap B_i$ = $\{b_i\}$ (i=0, 1) and $T \setminus \{b_0\} \subset V$, where $B_1 \cup A \subset V$ open.

We now fit a rectangular cube R_0 closely around A, and then cut R_0 into thin slices with planes P_0, P_1, \dots, P_k , so that we have the situation shown in Figure 1. We use the notation $[P_i, P_j] = \{p \in E^3 | p \text{ is strictly between } P_i \text{ and } P_j\}.$

Since B_1 is shrinkable to near b_1 , there is a homeomorphism f_0 that shrinks B_1 into Int R_0 without disturbing the elements of G very much. Since f_0G is also a monotone decomposition of E^3 , there is a rectangular cube R_1 concentric with R_0 such that $A \subset \text{Int } R_1$ and

 $f_0G(R_1) \subset (\operatorname{Int} R_0) \cup (S(B_0, \delta) \setminus T),$

where δ is very small. Let $\Phi_0 = \text{Id} \circ f_0$. Lemma 1 now delivers a homeo-

FIGURE 1

morphism f_1 that shrinks B_1 into Int R_1 without disturbing elements of $\Phi_0 G$ very much. Finally, there is a piecewise linear homeomorphism h_1 such that $h_1 = \text{Id}$ on $E^3 \setminus (\text{Int } R_0 \cap [P_{k-2}, P_k])$ and $h_1(R_1) = R_1 \setminus [P_{k-1}, P_k]$. Let $\Phi_1 = h_1 \circ f_1$.

We may now find a rectangular cube R_2 concentric with R_0 such that $\Phi_1(A) \subset \text{Int } R_2$ and

$$\Phi_1 G(R_2) \subset (\operatorname{Int} h_1(R_1) \cap [P_0, P_{k-1}]) \cup (S(B_0, \delta) \setminus T).$$

Just as we found f_1 and h_1 for Φ_0 , R_0 , and R_1 , we now find f_2 and h_2 for Φ_1 , $h_1(R_1)$, and R_2 . Let $\Phi_2 = h_2 \circ f_2$.

This procedure can be carried on inductively to finally obtain a homeomorphism Φ_{k-2} which shrinks $A \cup B_1$ into $[P_0, P_2] \cap \text{Int } R_0$. Thus if we require the planes P_i to be close together and R_0 to be close to A, we can make diam $\Phi_{k-2}(A \cup B_1)$ as small as we like. Also, if the planes are close enough together and R_0 is close to A, the condition that

$$\Phi_i G(R_{i+1}) \subset (\operatorname{Int} h_i(R_i) \cap [P_0, P_{k-i}]) \cup (S(B_0, \delta) \setminus T)$$

enables us to show that Φ_{k-2} either shrinks g to small size or disturbs g very little for each g in G. Thus Φ_{k-2} is the homeomorphism used to show that $B_1 \cup A$ is shrinkable to near b_0 with respect to G.

The applicability of the following lemma to the case of decompositions into trees should be evident.

LEMMA 2. Let B_1, B_2, \dots, B_n be compact sets in E^8 such that $B_i \cap B_j = \{b\}$ for $i \neq j$. Suppose each B_i is shrinkable to near b with respect to G. Then $\bigcup_{i=1}^{n} B_i$ is shrinkable to near b with respect to G.

THEOREM 3. Let g_0 be an element of G which is a tree consisting of tame arcs. Let U be an open set containing g_0 , let ϵ be any positive num-

ber, and let f be any homeomorphism. Then there is a homeomorphism h such that h=f on $E^3\setminus U$, diam $h(g_0) < \epsilon$, and for each g in G either $h(g) \subset S(f(g), \epsilon)$ or diam $h(g) < \epsilon$.

This theorem is easily proved when f=Id by using an inductive procedure involving Theorem 2 and Lemma 2. It is then a trivial task to prove the general result. Theorem 1 now follows by using the techniques of Bing in [2].

References

1. S. Armentrout, *Monotone decompositions of E*⁴, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 1–25.

2. R. H. Bing, Upper semicontinuous decompositions of E³, Ann. of Math. (2) 65 (1957), 363-374.

3. R. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990.

4. L. F. McAuley, Some upper semi-continuous decompositions of E³ into E³, Ann. of Math. (2) 73 (1961), 437-457.

INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use