MAPPING CYLINDERS AND THE ANNULUS CONJECTURE

BY L. S. HUSCH

Communicated by R. H. Bing, October 14, 1968

Suppose \(f \) is an embedding of the \(n \)-sphere \(S^n \) into the \((n+1)\)-sphere \(S^{n+1} \); \(f \) is said to be locally flat at \(x \in S^n \) if there is a neighborhood \(U \) of \(f(x) \) in \(S^{n+1} \) such that the pair \((U, U \cap f(S^n))\) is homeomorphic to \((E^{n+1}, E^n)\) where \(E^i \) is Euclidean \(i \)-space; i.e., there exists a homeomorphism \(h: U \to E^{n+1} \) such that \(h(U \cap f(S^n)) = E^n \cong E^n \times 0 \subseteq E^n \times E^1 = E^{n+1} \). Brown \([2], [3]\) has shown that if \(f \) is locally flat at each point of \(S^n \), then the closure of each complementary domain of \(f(S^n) \) in \(S^{n+1} \) is homeomorphic to an \((n+1)\)-cell. One of the outstanding unsolved problems in topology of manifolds is the annulus conjecture.

Suppose \(f, g \) are two locally flat embeddings (i.e., \(f \) and \(g \) are locally flat at each point of \(S^n \)) of \(S^n \) into \(S^{n+1} \) such that \(f(S^n) \cap g(S^n) = \emptyset \). The connected submanifold \(A^{n+1} \) of \(S^{n+1} \) whose boundary is \(f(S^n) \cup g(S^n) \) is called a pseudo-annulus. The annulus conjecture is that \(A^{n+1} \) is homeomorphic to \(S^n \times [0, 1] \). If \(f, g \) are both either piecewise linear or differentiable maps or if \(n \leq 2 \), then the conjecture is true.

This paper was motivated by an attempt to construct a counterexample to the annulus conjecture. Let \(\rho: S^n \to S^n \) be a continuous map. The mapping cylinder of \(\rho \), \(\text{Map}(\rho) \), is the decomposition space formed from the disjoint union \((S^n \times [0, 1]) \cup S^n \) by identifying \((x, 1)\) with \(\rho(x) \) for each \(x \in S^n \). The idea was to find a map \(\rho: S^n \to S^n \) such that \(\text{Map}(\rho) \) is an \((n+1)\)-manifold which is not homeomorphic to \(S^n \times I \); for example, one might attempt to construct such a \(\rho \) by using a variation of Bing’s example \([1]\) of an upper semicontinuous decomposition of \(S^3 \) which yields \(S^3 \) but some of whose nondegenerate elements are spheres. By Proposition 2, \(\text{Map}(\rho) \) would be a pseudo-annulus and hence a counterexample. However, we show that this is impossible in dimension 3; i.e., if \(\text{Map}(\rho) \) is a manifold, then it is homeomorphic to \(S^n \times I \).

The author expresses his gratitude to Professor R. H. Bing who shortened many of the original arguments. Chris Lacher has obtained similar results.

Let \(\rho: S^n \to S^n \) be a continuous map such that \(\text{Map}(\rho) \) is an \((n+1)\)-manifold. Let \(\pi: (S^n \times I) \cup S^n \to \text{Map}(\rho) \) be the natural projection.

1 Research supported in part by National Science Foundation grant GP-8615.
PROPOSITION 1. The boundary of \(\text{Map} \ (p) \) is the union of the two \(n \)-spheres \((S^n \times 0) \) and \((S^n \times 1) \).

PROOF. Suppose \(M \) has one boundary component. Note that \(M \) is homotopically equivalent to \(S^n \). In the exact sequence

\[
H_n(\partial M) \xrightarrow{i_*} H_n(M) \rightarrow H_n(M, \partial M)
\]

\(i_* \) is the zero map and by Poincaré Duality, \(H_n(M, \partial M) \) is isomorphic to \(H^1(M) = 0 \). Hence \(H_n(M) = 0 \), a contradiction.

PROPOSITION 2. \(\text{Map} \ (p) \) is a pseudo-annulus.

PROOF. By attaching an \((n+1) \)-cell to each boundary component of \(M \), one obtains a closed manifold \(S \). It is easy to see that \(S \) is the union of two open \((n+1) \)-cells and hence by [2], \(S \) is an \((n+1) \)-sphere in which \(M \) appears as a pseudo-annulus.

PROPOSITION 3. If \(n \neq 4 \), then \(p \) is a cellular map; i.e., if \(x \in S^n \), then \(p^{-1}(x) = \bigcap_{i=1}^{n+1} C_i \) where \(C_i (\subseteq \text{interior } C_{i-1}) \) are closed \(n \)-cells in \(S^n \).

PROOF. Let \(U \) be a contractible open subset of \(S^n \). Define \(g: p^{-1}U \rightarrow U \) by \(g = \text{proj} \mid p^{-1}U \). Map \((g) \) is a contractible open subset of Map \((p) \) for Map \((g) = r^{-1}U \) where \(r \) is the canonical deformation retraction of Map \((p) \) onto image \((p) = S^n \). Thus Map \((g) \) is an \((n+1) \)-manifold. Since \(U \) is collared in Map \((g) \) [3], Map \((g) - U \) is contractible. But Map \((g) - U \) deformation retracts to \(p^{-1}U \) and hence \(p^{-1}U \) is contractible. By Lacher [5, Theorem 2] for any open subset \(V \) of \(S^n \), \(p^{-1}(V) \rightarrow V \) is a proper homotopy equivalence. Let \(x \in S^n \), then \(x = \bigcap_{i=1}^{n+1} D_i \) where \(D_i (\subseteq \text{interior } D_{i-1}) \) are closed \(n \)-cells in \(S^n \). Since \(p^{-1}(x) = \bigcap_{i=1}^{n+1} p^{-1}D_i \), if we want to show that \(p^{-1}(x) \) is cellular, it is sufficient to show that there exists an \(n \)-cell \(C_i \) in \(p^{-1} (\text{interior } D_i) \) for each \(i \) such that \(p^{-1}(x) \) is contained in the interior of \(C_i \). From above \(p: p^{-1} (\text{interior } D_i) \rightarrow \text{interior } D_i \) is a proper homotopy equivalence; since interior \(D_i \) is 1-connected at infinity, \(p^{-1} (\text{interior } D_i) \) is 1-connected at infinity. For \(n = 3 \), \(p^{-1} (\text{interior } D_i) \) is an open 3-cell by Edwards [4]. For \(n \geq 5 \), we apply Stallings [7]. It is now easy to find \(C_i \).

THEOREM. If \(p: S^3 \rightarrow S^3 \) is a continuous map and Map \((p) \) is a manifold, then Map \((p) \) is homeomorphic to \(S^3 \times I \).

PROOF. By Proposition 3, \(p \) is a cellular map. By Price [6] there exists a pseudo-isotopy \(H: S^3 \times I \rightarrow S^3 \times I \) (i.e., \(H \) is level preserving and the map \(H_t: S^3 \rightarrow S^3 \), defined by \(H(x, t) = (H_t(x), t) \), is a homeomorphism for \(t \in [0, 1) \)) such that \(H_0 \) is the identity map and \(H_1 = p \).
Define $\phi: \text{Map}(\mathcal{P}) \to S^3 \times I$ by $H\pi^{-1}(x)$. It is easily seen that ϕ is a homeomorphism using the fact that π is an open map.

REFERENCES

UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602