The aim of this note is to describe the structure of a class of non-commutative rings which possess a variant of the Euclidean algorithm and indicate some properties of such rings.

All rings are associative and possess unity; subrings and homomorphisms are unitary. A domain is a (not necessarily commutative) ring without nonzero zero-divisors.

Let \mathcal{R} be a ring and ϕ be an ordinal-valued function defined on $\mathcal{R}\sim(0)$. Put $\phi(0) = -\infty$ and let $(-\infty) + (-\infty) = \alpha + (-\infty) = (-\infty) + \alpha = -\infty$ and $-\infty < \alpha$ for every ordinal α in the range of ϕ. ϕ is called a transfinite left division algorithm on \mathcal{R} if, for all $a, b \in \mathcal{R}$, the following conditions hold:

1. $\phi(a - b) \leq \max\{\phi(a), \phi(b)\}$,
2. $\phi(ab) = \phi(b) + \phi(a)$,
3. if $b \neq 0$, then there exist $q, r \in \mathcal{R}$ such that $a = qb + r$, $\phi(r) < \phi(b)$.

Clearly, every ring with a transfinite left division algorithm is a left principal ideal domain.

We need some terminology and notations. Let ρ be a mono-endomorphism of a domain D. A mapping $\delta : D \rightarrow D$ is called a ρ-derivation on D if $\delta(a + b) = \delta(a) + \delta(b)$ and $\delta(ab) = \rho(a)\delta(b) + \delta(a)b$ hold for all $a, b \in D$.

Let D be a subdomain of a domain R. Let x be an element of R such that every nonzero element $r \in R$ can be uniquely expressed as $\sum_{i=0}^{n} d_i x^{n_i}$ where $d_i \in D \sim(0)$ and n_i are integers with $0 \leq n_0 < \cdots < n_s$. Further, suppose that there exists a mono-endomorphism ρ of D and a ρ-derivation δ on D such that $xd = \rho(d)x + \delta(d)$ for all $d \in D$.

This situation is expressed symbolically as $R = D[x, \rho, \delta]$. Let R be a domain, α a nonzero ordinal and $\{R_\beta : \beta < \alpha\}$ a set of subdomains of R such that

1. $R = \bigcup_{\beta < \alpha} R_\beta$,
2. if $0 < \beta < \alpha$ then $R_\beta = (\bigcup_{\gamma < \beta} R_\gamma)[x_\beta, \rho_\beta, \delta_\beta]$. We express this situation symbolically as $R = R_0[x_\beta, \rho_\beta, \delta_\beta : 0 < \beta < \alpha]$. Thus, $\bigcup_{\gamma < \beta} R_\gamma = R_0[x_\gamma, \rho_\gamma, \delta_\gamma : 0 < \gamma < \beta]$. If all δ_β are zero derivations, we simplify the notation and put $R = R_0[x_\beta, \rho_\beta : 0 < \beta < \alpha]$.

Theorem 1 (Cf. [2], [4]). A ring R has a transfinite left division algorithm if and only if $R = K[x_\beta, \rho_\beta, \delta_\beta : 0 < \beta < \alpha]$, where K is a skew
field and, for every $0 < \beta < \alpha$,
\[
\rho_\beta(K[x_\gamma, \rho_\gamma; 0 < \gamma < \beta]) \subseteq K.
\]

A construction is given to prove the following

Theorem 2. Let k be an arbitrary skew field and α be an arbitrary nonzero ordinal. There exists a skew field K containing k as a subskew field and a ring $R = K[x_\beta, \rho_\beta; 0 < \beta < \alpha]$ such that
\[
\rho_\beta(K[x_\gamma, \rho_\gamma; 0 < \gamma < \beta]) \subseteq K.
\]

For $\alpha = 1$, any skew field would do. For $\alpha = 2$, $K[x, id]$ works. For $\alpha = 3$, Theorem 2 already contains a counterexample to a conjecture of I. N. Herstein, stated as highly likely to be true [3, p. 75]. For other implications, see [5].

In the following two theorems, K is a skew field and
\[
R = K[x_\beta, \rho_\beta; 0 < \beta < \alpha]
\]

where, for $0 < \beta < \alpha$,
\[
\rho_\beta(K[x_\gamma, \rho_\gamma; 0 < \gamma < \beta]) \subseteq K.
\]

Theorem 3 (Cf. [1]). R is a right primitive ring. R is a left primitive ring if and only if α is a nonlimit ordinal.

Theorem 4. Let Ω_λ be the first ordinal of cardinality \aleph_λ. We have
\[
\text{r. gl. dim } R = \infty \quad \text{if } \alpha \geq \Omega_\omega,
\]
\[
\geq n + 2 \quad \text{if } \alpha \geq \Omega_\omega + 1 \text{ where } n < \omega,
\]
\[
\geq 2 \quad \text{if } \omega \geq \alpha > 2.
\]

Using Theorems 2 and 4 it is shown that there exist rings with a transfinite left division algorithm having a prescribed right global dimension. Notice that the left homological dimension of any such ring is either 0 or 1 (cf. [6 and references given there]).

In a slightly different direction, we have

Theorem 5. A domain $R = D[x_\beta, \rho_\beta; 0 < \beta < \alpha]$ is a left principal ideal domain if and only if D is a left principal ideal domain and, for every $0 < \beta < \alpha$,
\[
\rho_\beta(D[x_\gamma, \rho_\gamma; 0 < \gamma < \beta] \sim (0)) \subseteq U(D)
\]

where $U(D)$ is the group of units of D.

Acknowledgement. The author is thankful to Professor N. Greenleaf for encouragement and advice.
REFERENCES

University of Rochester, Rochester, New York 14627 and Cornell University, Ithaca, New York 14850