CATEGORIES OF V-SETS

BY J. A. GOGUEN

Communicated by Saunders Mac Lane, December 9, 1968

Let V be a partially ordered set. Then a V-set is a function $A: X \to V$ from a set X to V. V is the set of values for A, and X is the carrier of A. If $B: Y \to V$ is another V-set, a morphism $f: A \to B$ is a function $\bar{f}: X \to Y$ such that $A(x) \leq B(\bar{f}(x))$ for each $x \in X$. The category of all V-sets is denoted $\mathcal{S}(V)$. The carrier functor $K: \mathcal{S}(V) \to \mathcal{S}$ assigns X to $A: X \to V$ and $\bar{f}: X \to Y$ to $f: A \to B$, where \mathcal{S} is the category of sets. See [2].

If V has one point, $\mathcal{S}(V) = \mathcal{S}$. If $V = \{0, 1\}$, where $0 < 1$, $\mathcal{S}(V)$ is the category of pairs (X, A) of sets, where $A \subseteq X$. If V is the closed unit interval, $\mathcal{S}(V)$ is the category of “fuzzy sets”, as used by Zadeh and others [1], [5] for problems of pattern recognition and systems theory. When V is a Boolean algebra, V-sets are Boolean-valued sets, as used by Scott and Solovay for independence results in set theory (however, their notion of morphism is different).

If V is complete, $\mathcal{S}(V)$ is a pleasant category satisfying all Lawvere’s axioms [3] for \mathcal{S} except choice, modulo some substitutions of the V-set with carrier 1 and value 0 for the terminal object. In particular,

Theorem 1. If V is complete, $\mathcal{S}(V)$ is complete and cocomplete, has an exponential (i.e., a coadjoint to product) and a “Dedekind-Pierce object” (i.e., an object which looks like the set of integers; see [3]).

Let Poc denote the category of partially ordered classes, and let \mathcal{L} be a subcategory of Poc. Then a category \mathcal{C} is \mathcal{L}-ordered if the power function $\mathcal{P}: |\mathcal{C}| \to \text{Poc}$ factors through \mathcal{L}, where $\mathcal{P}(A)$ is the class of all equivalence classes of monics with codomain $A (f \equiv g$ if \exists an isomorphism h such that $fh = g$). Denote the image of $A \sqcup B$ by $f(A)$, and the image of the composite $A \sqcup A \sqcup B$, where i is monic, by $f(A')$. Then \mathcal{C} has associative images if it has images such that $f(g(A)) = (fg)(A)$, whenever $A \sqcup B \sqcup C$. \mathcal{P} can be construed as a functor when \mathcal{C} has associative images. Let CL denote the category of complete lattices, and call a category \mathcal{C}_i if a coproduct of monics is always monic.

1 Research supported by Office of Naval Research under contracts Nos. 3656(08) and 222(85), at the University of California at Berkeley.
THEOREM 2. A CL-ordered category with associative images has equalizers, inverse images, unions, intersections, and epic images. If it has coproducts, it is C_1.

An object P in a category \mathcal{C} is monic if every arrow $P \to A$ is monic, and is further atomic if every $P \to A$ is atomic in $\varphi(A)$. P is good if the functor $[P, -] : \mathcal{C} \to \mathbb{S}$ is noninitial preserving. A union $\bigcup_i A_i$ in \mathcal{C} is disjoint if $i \neq j \Rightarrow A_i \cap A_j = \emptyset$, where \emptyset is the initial object. Let CDL be the category of completely distributive lattices, i.e., complete lattices satisfying the law $a \land V b_i = V_i(a \land b_i)$. Such lattices V have pseudo-complement operators $*: V \to V$ defined by $a* = V\{b \mid a \land b = 0\}$. Call $V \in |CDL|$ disjointed if for each pair x, y of unequal atoms, $x* \lor y* = 1$, the maximal element of V, and call \mathcal{C} disjointedly CDL-ordered if each $\varphi(A) \in |CDL|$ is disjointed.

THEOREM 3. A category \mathcal{C} is equivalent to $\mathbb{S}(V)$ for some $V \in |CDL|$ if and only if:

1. \mathcal{C} has an atomic monic good projective generator P;
2. \mathcal{C} has initial and terminal objects, \emptyset and I, respectively;
3. \mathcal{C} has coproducts, which are disjoint unions; and conversely, each disjoint union in \mathcal{C} is a coproduct in \mathcal{C};
4. \mathcal{C} has associative images;
5. \mathcal{C} is disjointedly CDL-ordered; and
6. $P \sqcup P$ is not isomorphic to P.

The Axioms (1)–(6) are easily verified for $\mathbb{S}(V)$, $V \in |CDL|$. We now sketch the converse, which (surprisingly) makes no use of adjoint functors. Essential use is made of Theorem 2, via Axioms (4) and (5).

Call the elements of $[P, A]$ the points of A. We first show the one-pointed objects of \mathcal{C} are the subobjects of I, except \emptyset; denote this lattice V. A calculation shows that each $A \subseteq \mathcal{C}$ is a disjoint union $\bigcup_{x \in [P, A]} x^*$, so by Axiom (3), $A = \bigcup_{x \in [P, A]} x^*$. These facts combine to show that each A is a subobject of $I_{[P, A]}$, the coproduct of I over the index set $[P, A]$. We then show the arrows $f : A \to B$ in \mathcal{C} are in 1-1 correspondence with appropriate arrows $j : [P, A] \to [P, B]$ in \mathbb{S}. The functor $E : \mathcal{C} \to \mathbb{S}(V)$ defined by $K(E(A)) = [P, A], E(A)(x) = x^* \subseteq V$, and $E(f) = [P, f]$, is then shown to be full, faithful, and representative.

The addition to Axioms (1)–(6) of either the categorical axiom of choice, or the condition $I = P$, yields a characterization of \mathbb{S}. For finite distributive lattices V, categories of V-sets with finite carrier are similarly characterized by all elementary axioms.
REFERENCES

UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

ERRATUM

Volume 75

Page 125:
Line 3. $\tilde{\phi}^p / f^p$ should read $\tilde{\phi}^p / f^p$.
Line 9. $\alpha(t^p_m) = s^t_m$ should read $\alpha(t^p_m) = s^t_m - \sum_{q=1}^{m-1} a_q t^p q$.
Line 10 from bottom. C^N should read C^n.