Let M be an F-manifold, that is, a separable, metric manifold modelled on an infinite-dimensional Fréchet space. The question was raised at a problem seminar this January (1969) at Cornell University whether homotopic embeddings of another F-manifold in M are isotopic. In this note the affirmative answer is given and a stronger result established.

Given an open cover \mathcal{U} of a space X, two maps f and g of a space Y into X are said to be \mathcal{U}-close provided that for each y in Y there is an element of \mathcal{U} containing both $f(y)$ and $g(y)$. The two maps are said to be pseudo-isotopic provided there is a map $h: Y \times I \to X$ with

$$h(y, 0) = f(y), \quad h(y, 1) = g(y)$$

and which for each t in $(0, 1)$ is an embedding of $Y \times \{t\}$. The theorem is as follows:

Theorem. Homotopic maps of a separable metric space into an F-manifold are pseudo-isotopic. If the domain is complete, the pseudo-isotopy may be required to be through closed embeddings. Furthermore, given any open cover \mathcal{U} of the manifold and any homotopy F between the maps, the pseudo-isotopy may be required to be \mathcal{U}-close to F.

Proof. Let X be the separable metric space, M the F-manifold, and f and g the homotopic maps of X into M. By a collection of results, all separable, infinite-dimensional Fréchet spaces are homeomorphic to the countably infinite product s of open intervals $(-1, 1)$. (For a discussion of these results and a bibliography, see the introduction of [3].) Furthermore, a theorem of R. D. Anderson and R. M. Schori [4] asserts that given any open cover \mathcal{U} of M, there is a homeomorphism $h_\mathcal{U}$ of M onto $M \times s$ so that $\rho \circ h_\mathcal{U}$ is \mathcal{U}-close to the identity map, where ρ is the projection onto M. If $\{s_t\}_{t=1}^\infty$ is a countable, indexed family of copies of s, it is easy to see that s', the product of the s_t's, is homeomorphic to s, so s may be replaced by s' in the above theorem.

For each integer i and real number t in $(-1, 1)$, let $\psi_{t,i}: s_i \to s_t$ be the map which multiplies in each coordinate by t, and let
\[\phi(i, t) = 1 \quad \text{if } t \leq \frac{1}{i + 1} \text{ or } t \geq \frac{i}{i + 1}, \]
\[= 0 \quad \text{if } \frac{1}{i} \leq t \leq \frac{i - 1}{i}, \]
\[= (i + 1)(1 - it) \quad \text{if } \frac{1}{i + 1} \leq t \leq \frac{1}{i}, \]
\[= (i + 1)(it - i + 1) \quad \text{if } \frac{i - 1}{i} \leq t \leq \frac{i}{i + 1}. \]

Also, let \(k_i \) be an embedding of \(X \) in \(s_i \), as a closed set if \(X \) is complete. (It is well known that this may be done in a separable Banach space.)

Given any homotopy \(F \) between \(f \) and \(g \) and any open cover \(\mathcal{U} \) of \(M \), let \(\mathcal{V} \) be a star-refinement of \(\mathcal{U} \); \(h_0 \), a homeomorphism of \(M \) onto \(M \times s' \) such that \(p \circ h_0 \) and the identity are \(\mathcal{V} \)-close, and define \(G: X \times I \to M \) by

\[G(x, t) = h_0^{-1} \circ \left[\text{id}_M \times \prod_{i=1}^{\infty} (\psi_{i, \phi(i, t)} + (\psi_{i, 1-\phi(i+1, t)} \circ k_i(x))) \right] \circ h_0 \circ F(x, t), \]

where "\(+ \)" is understood to indicate coordinate-wise addition, and "\(\prod \)", the product of mappings.

For each \(t \) in \((0, 1)\), \(h_0 \circ G | X \times \{t\} \) may be regarded as the product of a mapping of \(X \) into \(M \times \prod_{i=1}^{\infty} s_i \) with a (closed) embedding of \(X \) in \(s_{i_0} \), where \(i_0 \) is any integer greater than or equal to both \(1/t \) and \(1/(1-t) \). It is a simple matter to see that this is a (closed) embedding since it is continuous, one-to-one, and the inverse is continuous because given a point \((x, t)\) and a sequence \(\{\alpha_i, t\}_{i=1}^{\infty} \) in \(X \times \{t\} \) for which \(h_0 \circ G(x_i, t) \) converges to \(h_0 \circ G(x, t) \), the \(s_{i_0} \)-coordinates of \(\{h_0 \circ G(x_i, t)\}_{i=1}^{\infty} \) converge to the \(s_{i_0} \)-coordinate of \(h \circ G(x, t) \), and as the mapping into the \(s_{i_0} \)-coordinate is an embedding, this forces \(\{x_i\}_{i=1}^{\infty} \) to converge to \(x \). The image \(h_0 \circ G(X \times \{t\}) \) is closed if \(X \) is complete, since if \(\{\alpha_i, t\}_{i=1}^{\infty} \) is a sequence in \(X \times \{t\} \) and \(p \) is in \(M \times s' \) with \(h_0 \circ G(x_i, t) \) converging to \(p \), then the \(s_{i_0} \)-coordinates of \(h_0 \circ G(x_i, t) \) converge to the \(s_{i_0} \)-coordinate of \(p \), which forces the \(s_{i_0} \)-coordinate of \(p \) to be \(k_{i_0}(x) \), for some \(x \), and thus forces \(\{x_i\}_{i=1}^{\infty} \) to converge to \(x \).

If it is desired, the pseudo-isotopy may be modified slightly to provide that
(a) it be an embedding of $X \times (0, 1)$ in M and (b) the image of $X \times (0, 1)$ lie in a countable union of closed sets of M each of which has Property Z in M (in case X is complete, the image of $X \times (0, 1)$ may be required to be the countable union of closed sets with Property Z in M).

(A closed set Y has Property Z in M provided that for each nonnull open set U of M with trivial homotopy groups, $U - Y$ be also nonnull and have trivial homotopy groups. The importance of Property Z for F-manifolds is demonstrated by [2] in which it is shown that the subsets of such which are homeomorphic to the manifolds by homeomorphisms \mathcal{U}-close to the identity for all open covers \mathcal{U} are precisely the complements of countable unions of closed sets, each with Property Z.) The modified homotopy $H: X \times I \to M$ may be defined by setting $H(x, t) = h_0^{-1} \circ [id_M \times \prod_{i=1}^{\infty} \xi_i(x)] \circ h_0 \circ F(x, t)$, where

$$
\begin{align*}
\xi_i(x) &= \psi_{i,\theta(i+2,1)} + (\psi_{i,\theta(i+1,1)} \circ k_i(x)), \quad \text{if } i \text{ is even}, \\
&= \psi_{i,\theta(i+2,1)} + (\psi_{i,\theta(i+1,1)} \circ \psi_{i,\theta(y_i)}), \quad \text{if } i \text{ is odd} \\
&\quad \text{but not divisible by three, and} \\
&= \psi_{i,\theta(i+2,1)}, \quad \text{if } i \text{ is an odd multiple of three.}
\end{align*}
$$

Here, y_i is merely a point in s_i with not all coordinates zero; the y_i's are introduced for the purpose of guaranteeing that $H \big| X \times (0, 1)$ be an embedding. The insertion of merely the $\psi_{i,\theta(i+2,1)}$ in infinitely many coordinates is to ensure that for any t_0 in $(0, 1/2)$, $h_0 \circ H(X) \times [t_0, 1-t_0]$ project into s' on a set of infinite co-dimension which, by a theorem of R. D. Anderson [1], must have closure with Property Z. This guarantees that the closure of $h_0 \circ H(X) \times [t_0, 1-t_0]$ has Property Z in $M \times s'$ and hence that the closure of $H(X) \times [t_0, 1-t_0]$ has Property Z in M. If X is complete, the construction gives that $H(X \times [t_0, 1-t_0])$ is closed and has Property Z for each t_0 in $(0, 1/2)$.

Remark. D. W. Henderson has recently proven in [5] that if X is an F-manifold and \mathcal{U} an open cover of M, than any map of X into M may be approximated \mathcal{U}-closely by closed and open embeddings.

In light of these results, the following question, also raised at Cornell, would seem to be the appropriate one: "Under which circumstances are two homotopic embeddings of one F-manifold in another ambient isotopic?"

References

UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506