1. Results. A recent result of H. S. Shapiro and A. L. Shields [4] states that if \(f \) and \(g \) are continuous complex valued functions on the unit interval \(I \) such that together they separate the points of \(I \) and also that \(f \) alone separates all but one pair of points, then the closed subalgebra of \(C(I) \) generated by \(f \) and \(g \) is all of \(C(I) \). Two generalizations are:

Theorem. Let \(A \) be a separating uniform algebra on \(I \) such that there exists an \(f \) in \(A \) which is locally 1-1, then \(A = C(I) \).

Theorem. Let \(A \) be a separating uniform algebra on \(I \) generated by two functions \(f \) and \(g \) such that there is a compact totally disconnected subset \(E \) of \(I \) such that

(i) \(f|E \) is constant, and
(ii) \(f \) separates every pair of points of \(I \) not both of which are in \(E \).
Then \(A = C(I) \).

The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved

Stolzenberg’s Theorem. Let \(X \subseteq \mathbb{C}^n \) be a polynomially convex set. Let \(K \subseteq \mathbb{C}^n \) be a finite union of \(C^1 \)-curves. Then \((X \cup K)^c - X \cup K\) is a (possibly empty) pure 1-dimensional analytic subset of \(\mathbb{C}^n - X \cup K \). (See [5] for the notation and definitions.)

A further result of Stolzenberg (and Bishop) is that a \(C^1 \) arc \(K \subseteq \mathbb{C}^n \) is polynomially convex and \(P(K) = C(K) \). It is well known that no smoothness is needed in \(C^1 \) but that in higher dimensions further assumptions are required for the above conclusion. We have

Theorem. Let \(f_1, f_2, \cdots, f_n \in C(I) \) separate the points of \(I \) and suppose that for \(1 \leq i \leq n - 1 \), \(f_i \) is either \(C^1 \) or real-valued. Then the separating uniform algebra which \(f_1, f_2, \cdots, f_n \) generate is \(C(I) \).

If all the \(f_i, 1 \leq i \leq n - 1 \) are real valued, this theorem reduces to a result of Rudin [3]; on the other hand, if we consider the image \(K \) of \(I \) under \(t \to (f_1(t), \cdots, f_n(t)) \) we obtain a generalization of Stolzenberg’s result on smooth arcs.
Applied to uniform algebras on the circle \(T \), the methods of the previous theorems yield

Theorem. Let \(A \) be a separating uniform algebra on \(T \) which contains a function \(f \) which is locally 1-1, then either

(i) \(T \) is the maximal ideal space \(M_A \) of \(A \), in which case \(A = C(T) \) or

(ii) \(M_A - T \) is nonempty and has the structure of a 1-dimensional analytic space on which the functions in \(A \) are analytic.

Finally we have the following which Shapiro and Shields [4] conjectured as an improvement of a result of Björk.

Theorem. Let \(\Delta = \{ z : |z| < 1 \} \). Let \(F \) be a closed subset of \(\Delta \) with \(T \subseteq F \subseteq \Delta \) such that

(i) \(F \) has no interior in \(\mathbb{C} \),

(ii) \(\Delta - F \) is connected.

(iii) \((\Delta \cap F)^c \) does not contain \(T \).

Let \(g \in C(F) \) and suppose that the separating uniform algebra on \(F \) generated by \(g \) and \(z \) is a proper subalgebra of \(C(F) \). Then there exists \(G \in C(\Delta) \) such that

(i) \(G | T = g | T \),

(ii) \(G \) is analytic on \(\Delta - F \).

The proofs [1] will appear elsewhere, together with more complete references to the literature. J. E. Björk [2] has independently obtained similar results.

2. A special case. In order to indicate the methods, we prove the following special case of the first mentioned theorem.

Proposition 1. Let \(A \) be a separating uniform algebra on \(I \) which contains a function \(f \) which separates all but a finite number of pairs of points of \(I \). Then \(A = C(I) \).

Proof (Sketch). It is easily seen that there are a finite number of functions in \(A \) which separate the points of \(I \) and so we may assume that \(A \) is finitely generated by \(f_1 = f, f_2, \cdots, f_n \). Let \(K \) be the homeomorphic image of \(I \) under the map \(t \rightarrow (f_1(t), \cdots, f_n(t)) \). Then \(K \) is an arc in \(\mathbb{C}^n \) and \(z_1 \) (the first coordinate function) separates all but a finite number of pairs of points of \(K \). Our goal is to prove \(P(K) = C(K) \). We note that \(C - z_1(K) \) has finitely many components and in order to give a proof by induction on this number we prove a more general result.

Proposition 2. Let \(K \) be a finite disjoint union of arcs in \(\mathbb{C}^n \). Suppose \(z_1 \) separates all but a finite number of pairs of points of \(K \). Then \(P(K) = C(K) \) and (hence) \(K \) is polynomially convex.
PROOF. Let \(L = \mathcal{C}_1(K) \). \(C^1 - L \) has finitely many components. The proof will be by induction on this number \(k \).

\(k = 1 \): \(L \) does not separate the plane and \(L \) has no interior and so \(P(L) = C(L) \). It follows that \(z \rightarrow z \) is in \(P(L) \) and so \(z \circ z_1 = z_1 \in P(K) \).

It is easily seen from the Stone-Weierstrass theorem that \(P(K) \) contains every \(f \in C(K) \) which identifies the points that \(z_1 \) does. From this it follows that \(P(K) = C(K) \).

Next we assume the result for \(k - 1 \) and prove it for \(k > 1 \). Assume, for the moment, that \(K \) has been proved to be polynomially convex. Then \(L = \mathcal{C}_1(K) \) is the spectrum of \(z_1 \) as an element of \(P(K) \). As \(R(L) = C(L) \) it follows from the Gelfand theory that \(F \circ z_1 \in P(K) \) for all \(F \in C(L) \). In particular, \(z_1 \in P(K) \) and, as above, \(P(K) = C(K) \).

It remains to show \(K \) is polynomially convex. Suppose not. Let \(\Omega \) be a bounded component of \(C^1 - L \) such that there is an arc \(\gamma \subseteq \partial \Omega \) which is also in the boundary of \(\Omega_\alpha \), the unbounded component of \(C^1 - L \). Let \(\gamma^0 \) denote \(\gamma \) with its endpoints deleted. We may assume \(z_1 \) is \(1 \)-on \(z_1^{-1}(\gamma) \cap K \). Since \(\gamma \) is in the boundary of \(\Omega_\alpha \), \(z_1^{-1}(\gamma) \cap K = z_1^{-1}(\gamma) \cap \hat{K} \) by [5]. Let \(K_1 = K - z_1^{-1}(\gamma^0) \). Then \(K_1 \) satisfies the hypotheses of our proposition for the case \(k - 1 \). So by the induction hypothesis, \(P(K_1) = C(K_1) \) and \(K_1 \) is polynomially convex. We claim that \(z_1(\hat{K}) \cap \Omega \neq \emptyset \). In fact if \(p \in \hat{K} - K_1 \), as \(K_1 \) is polynomially convex, there is a polynomial \(f \) such that \(f(p) = 1 > \|f\|_{z_1} \). Let \(T \) be the component of \(\{q \in \hat{K} : |f(q)| \geq 1 \} \) which contains \(p \). Then by the local maximum modulus principle, \(T \) meets \(K \); hence \(T \) meets \(z_1^{-1}(\gamma^0) \cap K \). Hence \(z_1(T) \) meets \(\gamma \) and so clearly \(z_1(T) \) meets \(\Omega \).

Now by considering closed Jordan domains whose interiors are contained in \(\Omega \), whose boundaries contain \(\gamma \) and which meet \(\Omega \cap z_1(\hat{K}) \), it follows by [5] that \(z_1^{-1}(\Omega) \cap \hat{K} \) is a \(1 \)-dimensional complex manifold in \(z_1^{-1}(\Omega) \) which is mapped by \(z_1 \) biholomorphically onto \(\Omega \).

Let \(\alpha \) be a straight line segment in \(\Omega \). Let \(\gamma_1 \) and \(\gamma_2 \) be arcs in \(\Omega \cap \{ \text{endpoints of } \gamma \} \) which join the endpoints of \(\alpha \) to those of \(\gamma \) such that \(\alpha \cap \gamma \cap \gamma_1 \cap \gamma_2 \) is a Jordan curve bounding an open Jordan domain \(W \subseteq \Omega \). Let \(J = z_1^{-1}(\alpha) \cap \hat{K} \). \(J \) is a real analytic arc in \(C^n \). Let \(X = (\hat{K} - z_1^{-1}(\gamma)) \cup (z_1^{-1}(\gamma_1 \cup \gamma_2) \cap \hat{K}) \). Then \(X \) is polynomially convex as it is a union of arcs such that \(C^1 - z_1(X) \) has \(k - 1 \) components. By Stolzenberg's theorem \((X \cup J)^g - X \cup J \) is a \(1 \)-dimensional analytic subset of \(C^n - X \cup J \). But by the local maximum modulus principle \((X \cup J)^g = \hat{K} - z_1^{-1}(W \cup \gamma^0) \). It follows that \(\hat{K} - K \) is a \(1 \)-dimensional analytic subset of \(C^n - K \). If \(\lambda \in \Omega \cap z_1(\hat{K}) \), then \(z_1 - \lambda \) is an analytic function on \(\hat{K} \) which has a zero on \(\hat{K} \) and has a logarithm on \(\hat{K} \); this contradicts the argument principle [5]. We conclude that \(\hat{K} = K \). Q.E.D.
REFERENCES

University of Michigan, Ann Arbor, Michigan 48104