NORMS ON QUOTIENT SPACES
BY ARNOLD LEBOW AND MARTIN SCHECHTER
Communicated by Bertram Yood, June 23, 1967

1. Perturbation classes. Let S be a subset of a Banach space \mathfrak{a} over the complex numbers, and assume that $aS \subseteq S$ for each scalar $a \neq 0$. Let $P(S)$ denote the set of elements of \mathfrak{a} that perturb S into itself, i.e., $P(S) = \{ a \in \mathfrak{a} : a + s \in S \text{ for all } s \in S \}$.

Proposition 1.1. $P(S)$ is a linear subspace of \mathfrak{a}. If S is an open subset of \mathfrak{a}, then $P(S)$ is closed.

Proposition 1.2. Let $S_1 \subseteq S_2$ be two such subsets, and assume that S_1 is open and S_2 does not contain any boundary point of S_1. Then $P(S_2) \subseteq P(S_1)$.

Proposition 1.3. Assume that \mathfrak{a} is a Banach algebra with identity e. Let G denote the set of invertible elements in \mathfrak{a}. If $G \subseteq S$, then $P(S)$ is a left ideal. If $G \subseteq S$, then $P(S)$ is a right ideal.

Proposition 1.4. $P(G) = P$, the radical of \mathfrak{a}.

Let G_l (G_r) denote the set of left (right) invertible elements of \mathfrak{a}, and let H_l (H_r) denote the set of elements of \mathfrak{a} that are not left (right) topological divisors of zero.

Theorem 1.5. $P(H_l) \subseteq P(G_l) = R = P(G_r) \supseteq P(H_r)$.

Let X be a Banach space, and let $B(X) [K(X)]$ denote the set of bounded (compact) linear operators on X. Take $\mathfrak{a} = B(X)/K(X)$ and let π be the canonical homomorphism from $B(X)$ to \mathfrak{a}. Set

$$\Phi(X) = \pi^{-1}(G_l), \quad \Phi_l(X) = \pi^{-1}(G_l), \quad \Phi_r(X) = \pi^{-1}(G_r).$$

It is well known [6] that $\Phi_l(X)$ consists of those operators having finite nullity and closed, complemented ranges, and that $\Phi_r(X)$ consists of those operators having complemented null spaces and closed ranges with finite codimensions. $\Phi(X) = \Phi_l(X) \cap \Phi_r(X)$ is the set of Fredholm operators on X.

Theorem 1.6. $P(\Phi) = P(\Phi_l) = P(\Phi_r) = \pi^{-1}(R)$.

Let Z be any subset of $\{ 0, \pm 1, \pm 2, \ldots, \pm \infty \}$, and let Φ_z be the collection of those operators $A \in \Phi_l(X) \cup \Phi_r(X)$ such that $i(A) \in Z$, where $i(A) = \dim N(A) - \dim N(A')$.

Theorem 1.7. $P(\Phi_z) = \pi^{-1}(R)$.
2. Measures of noncompactness. Let X, Y be Banach spaces, and denote the set of bounded (compact) linear operators from X to Y by $B(X, Y)$ [$\mathcal{K}(X, Y)$]. Let S_X denote the unit ball in X. For any bounded subset Ω of X let $q(\Omega)$ denote the greatest lower bound of the numbers r such that Ω can be covered by a finite collection of spheres of radius r. For $A \in B(X, Y)$ set $\|A\|_q = q[A(S_X)]$. Let $\|A\|_m$ denote the greatest lower bound of all numbers η such that $\|Ax\| \leq \eta \|x\|$ for all x in some subspace having finite codimension. Let π denote the canonical homomorphism of $B(X, Y)$ into $B(X, Y)/\mathcal{K}(X, Y)$.

Proposition 2.1. Both $\|\cdot\|_q$ and $\|\cdot\|_m$ are seminorms and satisfy
$$\|BA\|_q \leq \|B\|_q \|A\|_q, \quad \|BA\|_m \leq \|B\|_m \|A\|_m, \quad \|A\|_q \leq \|\pi(A)\|, \quad \|A\|_m \leq \|\pi(A)\|, \quad \|A + K\|_q = \|A\|_q, \quad \|A + K\|_m = \|A\|_m$$
for $K \in \mathcal{K}(X, Y)$.

Theorem 2.2. $\|A\|_q/2 \leq \|A\|_m \leq 2\|A\|_q$.

Definition 2.3. A Banach space X will be said to have the compact approximation property with constant γ if for each $\epsilon > 0$ and finite set of points x_1, \ldots, x_n in X there is an operator $K \in \mathcal{K}(X)$ such that $\|I - K\| \leq \gamma$ and $\|x_j - Kx_j\| < \epsilon$ for $1 \leq j \leq n$.

Theorem 2.4. If Y has the compact approximation property with constant γ, then $\|\pi(A)\| \leq \gamma \|A\|_q$. Thus $B(X, Y)/\mathcal{K}(X, Y)$ is complete with respect to the norms induced by $\|\cdot\|_q$ and $\|\cdot\|_m$.

3. Semi-Fredholm operators. An operator $A \in B(X, Y)$ is in $\Phi_+(X, Y)$ if it has finite nullity and closed range.

Theorem 3.1. An operator A is in $\Phi_+(X, Y)$ if and only if for each Banach space Z there is a constant C such that $\|T\|_m \leq C\|AT\|_m$, $T \in B(Z, X)$. The constant does not depend on Z.

Corollary 3.2. If $A \in \Phi_+(X, Y)$ and X has the compact approximation property, then $\|\pi(T)\| \leq C\|\pi(AT)\|$, $T \in B(Z, X)$, for any Banach space Z.

Definition 3.3. For $A \in B(X, Y)$ set $q_A = \text{glb} \ q[A(\Omega)]/q(\Omega)$, where the glb is taken over all bounded subsets Ω of X.

Theorem 3.4. $A \in \Phi_+(X, Y)$ if and only if $q_A \neq 0$.

An operator $A \in B(X, Y)$ is in $\Phi(X, Y)$ if its range is closed and has finite codimension.

Theorem 3.5. $A \in \Phi_-(X, Y)$ if and only if $\beta(A - K) < \infty$ for all $K \in \mathcal{K}(X, Y)$, where $\beta(E) = \text{codim} \ R(E)$.
Theorem 3.6. \(A \in \Phi_-(X, Y) \) if and only if for each \(Z \) there is a constant \(C \) such that \(\| T \|_m \leq C \| TA \|_m \), \(T \in B(Y, Z) \). The constant \(C \) is independent of \(Z \).

We now consider the case \(X = Y \). Let \(r_\sigma(A) \) denote the spectral radius of an operator \(A \).

Theorem 3.7. If \(\| A^n \|_m < 1 \) for some \(n \geq 1 \), then \(I - A \in \Phi(X) \) and \(i(I - A) = 0 \).

Theorem 3.8.
\[
r_\sigma[\pi(A)] = \lim_{n \to \infty} \| A^n \|_m^{1/n} = \lim_{n \to \infty} \| A^n \|_q^{1/n} = \max_{\lambda \in \sigma_e(A)} | \lambda |,
\]
where \(\sigma_e(A) \) denotes the essential spectrum of \(A \) according to any of the usual definitions [8], [9].

Corollary 3.9. \(r_\sigma[\pi(A)] \geq q_A \). Hence an operator in \(\Phi_+(X) \) cannot be a Riesz operator.

Definition 3.10. A space \(X \) has the range property if for each \(\epsilon > 0 \) and each \(A \in B(X) \) with \(\dim N(A) = \infty \) there is a \(T \in B(X) \) such that \(\| T \|_q = 1 \) and \(q[T(S_x) \setminus N(A)] < \epsilon \). All subprojective [10] spaces have the range property.

Theorem 3.11. If \(X \) has the range property, then \(A \in \Phi_+(X) \) if and only if \(\| T \|_q \leq C \| AT \|_q \) for all \(T \in B(X) \).

Theorem 3.12. If \(X \) is subprojective and \(\pi(A) \) is not a left zero divisor then \(A \in \Phi_+(X) \).

Corollary 3.13. If \(X \) is subprojective and has the compact approximation property, then every topological left zero divisor in \(B(X)/\mathcal{K}(X) \) is a left zero divisor.

Theorem 3.14. If \(X \) is superprojective [10] and \(\pi(A) \) is not a right zero divisor, then \(A \in \Phi(X) \).

Corollary 3.15. If \(X \) is both subprojective and superprojective, then every element of \(B(X)/\mathcal{K}(X) \) which is not a zero divisor is invertible.

4. Remarks. Some of the results of §1 were also obtained by B. Gramsch [12]. The \(q \)-seminorm was studied by Gol'denšteĩn, Gokhberg, Markus [1], [2] and Darbo [3]. The basic idea goes back to Kuratowski [11]. For the \(q \)-seminorm Proposition 2.1 was proved in [1]. The compact approximation property is weaker than the metric approximation property of Grothendieck [4] and is similar to one of Bonsall [5].
BIBLIOGRAPHY

5. Frank F. Bonsall, Compact linear operators, Lecture notes, Yale University, New Haven, Conn., 1967.

