S. Smale has conjectured, in an unpublished paper, that the Morse Theory on Hilbert manifolds due to Palais and Smale [1], [4] can be extended to Banach manifolds. Under a different definition of nondegeneracy of critical points we have been able to make this extension. The result also extends Morse theory on Hilbert manifolds to a wider class of functions. I wish to thank R. Palais for several helpful suggestions.

Let f be a real-valued C^1 function on a C^1 Banach manifold X. A critical point x of f is said to be weakly nondegenerate if there exists a neighborhood U of x and a hyperbolic linear isomorphism $L_x: T_x(X) \to T_x(X)$ such that in the coordinate system of U, $df_{x+v}(L_xv) > 0$ for all $x+v$ in U, $v \neq 0$. Then $T_x(X)$ splits into the direct sum of two invariant subspaces $T_x(X) = T_x(X)_+ \oplus T_x(X)_-$ such that the spectrum of L_x on $T_x(X)_+$ lies in the right half plane and the spectrum of L_x on $T_x(X)_-$ lies in the left half plane. The index of f at x is defined to be $\dim T_x(X)_-$, and this term is well defined. A nondegenerate critical point of a function on a Hilbert manifold is weakly nondegenerate.

Theorem 1. Let f be a C^2 function on a C^2 paracompact manifold X without boundary modeled on a separable Banach space B. We assume that B has C^2 partitions of unity and a metric which is C^2 away from 0. If, in addition,

(a) f satisfies condition (C) of Palais and Smale with respect to a complete Finsler metric on X, and

(b) $q > q'$ are not critical values, and all the critical points in $f^{-1}((q, q'))$ are weakly nondegenerate of finite index,

then there exists a homeomorphism $\theta: f^{-1}[q, -\infty) \approx f^{-1}[q', -\infty) \cup h_i$ where a handle h_i of index q_i is added for each one of the finite number of critical points $x_i \in f^{-1}((q, q'))$ of index q_i.

Remark. In the case of an infinite index, a similar result holds, provided that

$$df_{x+v}(L_xv) > \alpha(\|v\|_B)$$

for $0 \neq v \in T_x(M)_- \cap U$

where α is a continuous function from $R^+ \to R^+$.

105
THEOREM 2. Let η be a vector bundle over a finite dimensional manifold N. Let the integral $J: L^p_2(\eta) \to \mathbb{R}$ be given by

$$J(s) = \int_N (1 + |A(s)|^2)^{p/2} + B(s) \, du \quad (p \geq 2)$$

where A is a nonlinear (over-determined) elliptic system of order and weight k, $pk > \dim N$, and B is of order $k-1$ and weight pk. Then J is C^∞ (C^∞ for p even) on the Sobolev space $L^p_k(\eta)$, and if the critical point v has the properties:

(a) $v \in C^{k+a}(\eta)$ for any $a > 0$,
(b) the bilinear form $d^2J_v(\cdot, \cdot)$ extends to a nondegenerate form on $H_k(\eta)$,

then v is a weakly nondegenerate critical point of J with finite index.

REFERENCES

5. ———, Morse theory on Finsler manifolds (unpublished article).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

1 See Chapter 16 of [3].