BOUNDING IMMERSIONS OF CODIMENSION 1 IN THE EUCLIDEAN SPACE

BY ANDRÉ GRAMAIN

Communicated by Emery Thomas, August 4, 1969

Let M be an $(n+1)$-dimensional differentiable manifold without boundary (compact or not) and $f: V \rightarrow M$ an immersion of the compact n-dimensional manifold without boundary V. We say that f is a bounding immersion if there is a manifold W^{n+1} with boundary $dW = V$, and an immersion $g: W \rightarrow M$ such that $f = g|V$. If M and V are oriented, then V must be the oriented boundary of the oriented manifold W, and g an oriented immersion of codimension 0.

Using the classification of immersions (Smale [7], Hirsch [2]) and the work of Kervaire-Milnor [3], [4], we compute in this note the regular homotopy classes of all bounding immersions of the sphere S^n into the euclidean space \mathbb{R}^{n+1} and into the sphere S^{n+1}.

1. Statement of the results. From [2] we know that the derivation $f \mapsto T(f)$ defines a weak homotopy equivalence between the space $\text{Imm}(V, M)$ of the immersions of V into M and the space of the fibre-maps of the tangent bundle $T(V)$ into the tangent bundle $T(M)$ which are injective in each fibre. If $V = S^n$ and $M = \mathbb{R}^{n+1}$, the set of connected components of this last space is an homogeneous space under the group $\pi_n(SO(n+1))$. By a convenient identification, we obtain a bijection $\gamma: \pi_0(\text{Imm}(S^n, \mathbb{R}^{n+1})) \rightarrow \pi_n(SO(n+1))$ such that the class of the ordinary imbedding be $0 \in \pi_n(SO(n+1))$. Furthermore the map γ is additive with respect to the connected sum of immersions [5].

Similarly, using the fact that the fibration $SO(n+2) \rightarrow S^{n+1} = SO(n+2)/SO(n+1)$ is the principal fibration with group $SO(n+1)$ tangent to S^{n+1}, it is easy to obtain a bijection $\beta: \pi_0(\text{Imm}(S^n, S^{n+1})) \rightarrow \pi_n(SO(n+2))$ additive with respect to the connected sum. If $i: \mathbb{R}^{n+1} \rightarrow S^{n+1}$ is the stereographic projection with the south pole $(x_1 = -1)$ as center, we have a commutative diagram

$$
\begin{array}{ccc}
\pi_0(\text{Imm}(S^n, \mathbb{R}^{n+1})) & \gamma & \pi_n(SO(n+1)) \\
\downarrow i_* & & \downarrow s \\
\pi_0(\text{Imm}(S^n, S^{n+1})) & \beta & \pi_n(SO(n+2))
\end{array}
$$

AMS Subject Classifications. Primary 5720.

Key Words and Phrases. Differentiable immersion, bounding immersion, codimension one, Smale classification, Hopf-Whitehead homomorphism, Kervaire-Milnor exact sequence.
where the stabilization homomorphism s is induced by the inclusion of $SO(n+1)$ as the subgroup of $SO(n+2)$ acting on the $n+1$ last coordinates. From now on, we shall denote by \bar{f} the class $\gamma(f)$.

If we denote by $J_n: \pi_n(SO(n+2)) \to \pi_n (= \pi_{2n+2}(S^{n+2}))$ the stable Hopf-Whitehead homomorphism, we can state the result:

Theorem 1. For each $n \geq 1$, the set of the classes of the bounding immersions of S^n in S^{n+1} is the kernel of J_n.

Theorem 2. For each $n \geq 2$, the set of the classes of the bounding immersions of S^n in R^{n+1} is the kernel of $J_n \circ s$.

In order to prove those results, we admit some lemmas whose proof will appear elsewhere.

2. **First step of the proof.** Let A_{n+1} be the cobordism group of stably parallelized manifolds W^{n+1} with boundary S^n. If W is the manifold without boundary obtained from W by gluing a disk D^{n+1} along the boundary $S^n = dW$, we denote by $a(W, T) \in \pi_n(SO(n+2))$ the obstruction to extend the s-parallelization T of W to W': hence we have an homomorphism $a: A_{n+1} \to \pi_n(SO(n+1))$. Similarly, let B_{n+1} be the monoid of isomorphism classes of such manifolds W with a true parallelization. It follows from [2] or [6] that, if t is a parallelization of W, there is an immersion $g: W \to R^{n+1}$, unique up to regular homotopy, such that the trivialization $T(g)$ of $T(W)$ be homotopic to t. If we consider the class of the restriction f of g to $dW = S^n$, we define an homomorphism $b: B_{n+1} \to \pi_n(SO(n+1))$. Furthermore we have a natural homomorphism $S: B_{n+1} \to A_{n+1}$.

Lemma 1. The following diagram

$$
\begin{array}{ccc}
B_{n+1} & \rightarrow & \pi_n(SO(n+1)) \\
S \downarrow & & \downarrow \\
A_{n+1} & \rightarrow & \pi_n(SO(n+2))
\end{array}
$$

is commutative.

Thus, the set of classes of bounding immersions in $Imm(S^n, R^{n+1})$, which is the image of b, is a monoid included in $\ker(J_n \circ s)$ because of the exactness of the sequence

$$
A_{n+1} \rightarrow \pi_n(SO(n+2)) \rightarrow \pi_n
$$

(see [4]); and $b(B_{n+1})$ intersects each fibre $s^{-1}(x), x \in \ker(J_n)$, since the map S is surjective. To prove Theorem 2, it suffices to prove that $b(B_{n+1})$ contains $\ker(s)$ (if $n \geq 2$).
3. Second step. Let \(u \in \pi_n(\text{SO}(n+1)) \) be the boundary of the generator \(i_{n+1} \in \pi_{n+1}(S^{n+1}) \) in the homotopy exact sequence

\[
\pi_{n+1}(S^{n+1}) \xrightarrow{d} \pi_n(\text{SO}(n+1)) \xrightarrow{s} \pi_n(\text{SO}(n+2)) \to 0
\]

of the fibration \(S^{n+1} = \text{SO}(n+2)/\text{SO}(n+1) \). The cyclic group \(\text{Ker}(s) \) is generated by \(u \). From the following lemma and the fact that there are parallelizable closed manifolds in all dimensions, it results that \(u \) is the class of a bounding immersion:

Lemma 2. If \(W'' \) is a closed parallelizable closed manifold, and \(t \) is the restriction to \(W = W' - D^{n+1} \) of a parallelization of \(W' \), then \(b(W, t) = u \in \pi_n(\text{SO}(n+1)) \).

Now, we can prove Theorem 1. First, we remark that any immersion \(F: S^n \to S^{n+1} \) is regular homotopic to an immersion \(i \circ f \), where \(f \in \text{Imm}(S^n, R^{n+1}) \) and that \(i \circ f \) and \(i \circ f' \) have the same class in \(\text{Imm}(S^n, S^{n+1}) \) if and only if there is some \(q \in \mathbb{Z} \) such that \(f' = f + qu \). Then we remark that, if \(F \) is a bounding immersion in \(S^{n+1} \), it is regular homotopic to an immersion \(F' \) bounded by \(G' : W \to S^{n+1} \) whose image \(G'(W) \) avoids the south pole. Therefore:

Lemma 3. Let \(f \in \text{Imm}(S^n, R^{n+1}) \); the following assertions are equivalent:

(i) \(J_n \circ s(f) = 0 \).

(ii) There is a bounding immersion regular homotopic (in \(S^{n+1} \)) to \(i \circ f \).

(iii) There is a bounding immersion \(f' \in \text{Imm}(S^n, R^{n+1}) \) such that \(f' = f + qu \) for some \(q \in \mathbb{Z} \).

Theorem 1 is a quite evident consequence of Lemma 3.

4. Last step. If \(n \) is even, Theorem 2 is already proved, because \(\text{Ker}(s) \) contains at most the two elements \(0 \) and \(u \) which are both bounding. If \(n = 2 \) or \(6 \), then \(\pi_n(\text{SO}(n+1)) = 0 \) and the only class is trivially the class of a bounding immersion. If \(n \neq 2, 6 \), then \(J_n \) is injective \([1]\) and the two distinct classes \(0 \) and \(u \) are the only bounding classes.

If \(n \) is odd, the kernel of \(s \) is infinite cyclic, generated by \(u \) and it suffices to prove that \(-u \) is the class of a bounding immersion, since \(b(B_{n+1}) \) is a monoid.

If \(f \in \text{Imm}(S^n, R^{n+1}) \), let \(d(f) \in \mathbb{Z} \) be the normal degree (curvatura integra) of the immersion \(f \) (see \([5]\)). It is proved in \([5]\) that \(d(f' - f) = d(f) + d(f') - 1 \). Now, the Hopf theorem of curvatura integra states that \(d(f) = \chi(W) \) if \(f \) is the restriction to the boundary of an immersion.
It is clear that \(d(0) = 1 \), and it follows from Lemma 2 that
\[d(u) = -1. \]
Thus, the elements \(qu (q \in \mathbb{Z}) \) of \(\text{Ker}(s) \) are determined by their (odd) degree
\[d(q \cdot u) = 1 - 2q. \]

If \(n = 1 \), there is no 2-manifold, with boundary \(S^1 \), whose Euler number is more than 1, so that:

Theorem 2'. In \(\pi_0(\text{Imm}(S^1, \mathbb{R}^3)) \cong \pi_1(\text{SO}(2)) \), the classes of bounding immersions are the classes of odd degree \(1 - 2q, q \geq 0 \).

For \(n \) odd \(\neq 1 \), the manifold \(W' = S^2 \times S^{n-1} \) is \(s \)-parallelizable; there is a parallelization \(t \) of the manifold \(W = W' - D^{n+1} \) which stably extend to \(W' \). It follows from Lemma 1 that \(b(W, t) \in \text{Ker}(s) \). Now, the Euler number of \(W \) is 3 so that \(b(W, t) = -u \). Thus, \(-u \) is the class of a bounding immersion and Theorem 2 is proved.

5. Application.

Theorem 3. Let \(V^n \) be an \(s \)-parallelizable compact manifold without boundary, and \(f: V \to \mathbb{R}^{n+1} \) an immersion. Suppose \(n \geq 2 \). If \(i \circ f: V \to S^{n+1} \) is a bounding immersion, then \(f \) is regular homotopic (in \(\mathbb{R}^{n+1} \)) to an immersion \(f' \) which is bounding (in \(\mathbb{R}^{n+1} \)).

If the manifold \(V \) is the \(n \)-sphere, this theorem is an immediate corollary of Theorems 1 and 2. In the general case, we deform the immersion \(G: W \to S^{n+1} \) which bounds \(F = i \circ f \) in an immersion \(G' \) whose image \(G'(W) \) avoid the south pole, so that \(G' = i \circ g' \). The immersion \(g' \) bounds \(f' \) such that \(i \circ f' = F' = G'|V \). But \(f \) and \(f' \) have not the same class (in \(\mathbb{R}^{n+1} \)) because, during the regular homotopy, the class of \(f \) has been changed by each crossing of the south pole.

Let \(F_t: V \to S^{n+1} (t \in [0, 1]) \) be a regular homotopy with only one crossing of the south pole through \(F_t(V) \), then \(F_1 \) is regular homotopic to the connected sum \(f_0 + h \) of \(f_0 \) with an immersion \(h: S^n \to \mathbb{R}^{n+1} \) with class \(h \in \text{Ker}(s) \) (in fact, \(h = \pm u \), depending on the direction of the crossing).

Thus, \(f \) is regular homotopic to an immersion \(f'' \) which is the connected sum of \(f' \) with some immersions \(h_i \) such that \(h_i \in \text{Ker}(s) \). We can replace the \(h_i \) by bounding immersions \(k_i \) of the same class (Theorem 2), and, now, \(f'' \) is the connected sum of the bounding immersions \(f' \) and \(k_i \); so \(f'' \) is a bounding immersion.

Bibliography

Ecole Normale Supérieure, Paris, France