Four classes of separable metric infinite-dimensional manifolds
HTML articles powered by AMS MathViewer
- by T. A. Chapman PDF
- Bull. Amer. Math. Soc. 76 (1970), 399-403
References
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041, DOI 10.1307/mmj/1028999787 2. R. D. Anderson, On dense sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear).
- R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771–792. MR 230284, DOI 10.1090/S0002-9904-1968-12044-0
- R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283–289. MR 258064, DOI 10.1090/S0002-9939-1970-0258064-5
- R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315–330. MR 246327, DOI 10.1090/S0002-9947-1969-0246327-5
- R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143–150. MR 246326
- T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137–146. MR 256418, DOI 10.1090/S0002-9947-1970-0256418-9
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759–762. MR 247634, DOI 10.1090/S0002-9904-1969-12276-7
- James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1–25. MR 266147, DOI 10.1090/S0002-9947-1970-0266147-3
Additional Information
- Journal: Bull. Amer. Math. Soc. 76 (1970), 399-403
- MSC (1970): Primary 5755; Secondary 5705, 5701
- DOI: https://doi.org/10.1090/S0002-9904-1970-12490-9
- MathSciNet review: 0253375