Measures which are convolution exponentials
HTML articles powered by AMS MathViewer
- by Joseph L. Taylor PDF
- Bull. Amer. Math. Soc. 76 (1970), 415-418
References
- R. Arens, The group of invertible elements of a commutative Banach algebra, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 21–23. MR 0146678
- Harald Bohr, Ueber fastperiodische ebene Bewegungen, Comment. Math. Helv. 4 (1932), no. 1, 51–64 (German). MR 1509444, DOI 10.1007/BF01202704
- R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) Birkhäuser, Basel, 1969, pp. 53–66. MR 0259638
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- H. L. Royden, Function algebras, Bull. Amer. Math. Soc. 69 (1963), 281–298. MR 149327, DOI 10.1090/S0002-9904-1963-10900-3
- Joseph L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150–166. MR 185465, DOI 10.1090/S0002-9947-1965-0185465-9
- Joseph L. Taylor, Ideal theory and Laplace transforms for a class of measure algebras on a group, Acta Math. 121 (1968), 251–292. MR 236628, DOI 10.1007/BF02391915
- Joseph L. Taylor, $L$-subalgebras of $M(G)$, Trans. Amer. Math. Soc. 135 (1969), 105–113. MR 233149, DOI 10.1090/S0002-9947-1969-0233149-4
Additional Information
- Journal: Bull. Amer. Math. Soc. 76 (1970), 415-418
- MSC (1970): Primary 4680, 4256
- DOI: https://doi.org/10.1090/S0002-9904-1970-12494-6
- MathSciNet review: 0261371