AN INVARIANCE PRINCIPLE FOR THE EMPIRICAL PROCESS WITH RANDOM SAMPLE SIZE

BY M. CSÖRGŐ AND S. CSÖRGŐ

Communicated by David Blackwell, January 19, 1970

Let $C = C[0, 1]$ be the space of continuous functions on $[0, 1]$ with the uniform topology, that is the distance between two points x and y (two functions x and y of $t \in [0, 1]$) is defined by

$$\rho(x, y) = \sup_t |x(t) - y(t)|.$$

Let \mathcal{B} be the σ-field of Borel sets of C. Let (Ω, \mathcal{A}, P) be some probability space and W be the Wiener measure on (C, \mathcal{A}) with the corresponding Wiener process \{\$W_t(\omega) : 0 \leq t \leq 1\$, $\omega \in \Omega$; that is W_t has values in C and is specified by $E(W_t) = 0$ and $E(W_s W_t) = s$ if $s \leq t$. Let W^0 be the Gaussian measure on (C, \mathcal{A}) constructed by setting $W^0_t = W_t - tW_1$. Then $W_t^0 \in C$, $E(W_0^0) = 0$ and $E(W_s^0 W_t^0) = s(1 - t)$ if $s \leq t$. Also $W_0^0 = W_1^0 = 0$ with probability 1 and \{\$W_t^0 : 0 \leq t \leq 1\$\} is called the tied down Wiener process or the Brownian bridge.

Let $S_n = \xi_1 + \cdots + \xi_n$, $S_0 = 0$, $n = 1, 2, \cdots$ be the partial sum sequence of random variables $\{\xi_n\}$ defined on (Ω, \mathcal{A}, P). Define a random element X_n of C by

$$(1) \quad X_n(t, \omega) = W_n(t, \omega) + (nt - [nt])\xi_{[nt]+1}(\omega)/n^{1/2} - tW_n(1, \omega)$$

where $W_n(t, \omega) = S_{[nt]}(\omega)/n^{1/2}$. The following theorem is an immediate consequence of L. Breiman's analysis of §§13.5 and 13.6 in his book [3].

Theorem B. Suppose the random variables ξ_1, ξ_2, \cdots are independent and identically distributed with mean zero and variance 1. Then the random functions X_n defined by (1) satisfy

$$(2) \quad X_n \overset{D}{\rightarrow} W^0.$$

Here (2), and also similar relations later on, are interpreted in accordance with (4.5) and (4.7) of Billingsley's book [2], depending on

AMS Subject Classifications. Primary 6030, 6040; Secondary 6270, 6271.

Key Words and Phrases. Invariance principle, weak convergence, randomly selected partial sums, empirical process, random-sample-size Kolmogorov-Smirnov statistics.

1 Work done while the author was a Canada Council Fellow in 1969–1970 at the University of Vienna.
whether W^0 is construed as a random function or as a measure in the spirit of [2, p. 65]; the meaning is the same for the two interpretations. Since $h(x) = \sup_t |x(t)|$ with $x(t) = w(t) - tw(1)$ is a continuous function on C in the sup-norm metric, (2) implies

$$\sup_t \left| X_n(t) \right| \overset{\mathcal{D}}{\longrightarrow} \sup_t \left| W^0_t \right|,$$

an invariance principle, as statements like this are often called. Similarly,

$$\sup_t X_n(t) \overset{\mathcal{D}}{\longrightarrow} \sup_t W^0_t, \quad \inf_t X_n(t) \overset{\mathcal{D}}{\longrightarrow} \inf_t W^0_t.$$

For each n, let ν_n be a positive-integer-valued random variable defined on the same probability space as the ξ_n. Define X_n^*, a random element of C, as in (1), and Y_n^*, another random element of C, by

$$Y_n(t, \omega) = X_{\nu_n(t)}(t, \omega).$$

Theorem 1. Suppose the random variables ξ_1, ξ_2, \ldots are independent and identically distributed with mean zero and variance 1. If

$$\frac{\nu_n}{n} \overset{P}{\longrightarrow} \nu,$$

where ν is a positive random variable, and

$$\xi_{\nu_n(t)}(\omega)/\nu_n(\omega) \overset{P}{\rightarrow} 0, \quad \text{for every fixed } t,$$

then the random functions Y_n defined by (3) satisfy

$$Y_n \overset{\mathcal{D}}{\longrightarrow} W^0.$$

Corollary 1. Under the same assumptions as in Theorem 1 (6) implies

$$\sup_t \left| Y_n(t) \right| \overset{\mathcal{D}}{\longrightarrow} \sup_t \left| W^0_t \right|,$$

$$\sup_t Y_n(t) \overset{\mathcal{D}}{\longrightarrow} \sup_t W^0_t,$$

$$\inf_t Y_n(t) \overset{\mathcal{D}}{\longrightarrow} \inf_t W^0_t.$$

Remark 1. Let D be the space D of Chapter 3 of P. Billingsley's book [2]. Define random elements X_n^*, Y_n^* of D by
with $W_n(t, \omega)$ as in (1). Then Theorem B holds for X_n^* of (7) and, omitting condition (5), Theorem 1 holds for Y_n^* of (8). Also, in defining Y_n of (3) and Y_n^* of (8) it is not essential that the random variables $\{\xi_n\}$ involved should be independent and identically distributed with unit variance. We have stated Theorem 1 here for random elements of C and for independent identically distributed random variables having unit variance only because it is, as will be shown later, directly applicable in this form to prove the random-sample-size Kolmogorov-Smirnov theorems. More general versions of Theorem 1 and detailed proofs of them will appear in [4]. We also note that for Y_n of (3) one postulates (5), for it is not true in general that $\xi_{[n t]}/n^{1/2}$ implies (5).

For the proof of Theorem 1 we use Theorem B, Theorems 7.7, 8.1, 8.2 of P. Billingsley's book [2] and results of A. Rényi [7] and J. Mogyoródi [5]. First we show that for a single time point $s \{X_n^*(s)\}$ is mixing with the normal distribution function $N(0, s(1-s))$ in the sense of A. Rényi's definition of mixing sequences of events [7] and that it also satisfies the tightness condition of F. J. Anscombe [1]. Then, using Theorem B, Theorem 7.7 of [2] and Theorem 2 of [5], we show that the finite-dimensional distributions of Y_n of (3) converge to those of W^0. Next it is verified that the sequence $\{Y_n\}$ is tight in the sense of Theorem 8.2 of [2] and then Theorem 1 follows from Theorem 8.1 of [2]. Details of this proof will appear in [4].

Let U_1, \cdots, U_n be independent random variables uniformly distributed on $[0,1]$. The order statistics are defined as follows: $U_{[1]}$ is the smallest, and so forth; $U_{[n]}$ is the largest. Let

$$F_n(t) = \frac{\text{the number of the } U_i \leq t}{n}, \quad t \in [0,1].$$

Define the Kolmogorov-Smirnov statistics

$$D_n^+ = n^{1/2} \sup_t (F_n(t) - t) = n^{1/2} \max_{k \leq n} (k/n - U_k^{(n)}),$$

$$D_n^- = n^{1/2} \inf_t (F_n(t) - t) = n^{1/2} \min_{k \leq n} (k/n - U_k^{(n)}),$$

$$D_n = n^{1/2} \sup_t \left| t - F_n(t) \right| = n^{1/2} \max_{k \leq n} \left| U_k^{(n)} - k/n \right|,$$

and the random-sample-size Kolmogorov-Smirnov statistics $\Delta_n^+ = D_n^+, \Delta_n^- = D_n^-, \Delta_n = D_n$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THEOREM 2. Under condition (4) of Theorem 1 we have

\[\Delta_n^+ \overset{\mathcal{D}}{\to} \sup_t W_t^0, \quad \Delta_n^- \overset{\mathcal{D}}{\to} \inf_t W_t^0, \quad \Delta_n \overset{\mathcal{D}}{\to} \sup_t |W_t^0|. \]

Proof of Theorem 2. Let \(S(n) = \xi_1 + \cdots + \xi_n, \) \(n = 1, 2, \cdots \) be the partial sum sequence of independent exponential random variables \(\{\xi_n\} \) with mean 1. L. Breiman [3, §13.6] obtained the following representation of \(D_n \)

\[D_n = n^{1/2} \max_{k \leq n} \left| \frac{S(k)}{S(n+1)} - \frac{k}{n} \right|, \]

(9)

with analogous expressions for \(D_n^+ \) and \(D_n^- \). Here \(\mathcal{D} \) means that the random variables in question have the same distribution. Put \(\xi_n = \xi_n - 1, S_k = S(k) - k \) and \(W_n(t, \omega) = S_{\lfloor nt \rfloor} - S_{\lfloor nt \rfloor} \). Then

\[D_n = \sup_t \left| X_n^*(t, \omega) \right|, \quad \text{for } n \text{ large}, \]

(10)

\[D_n = \sup_t \left| X_n(t, \omega) \right|, \quad \text{for } n \text{ large}, \]

where \(X_n^* \) and \(X_n \) are respectively defined in terms of the above \(\xi_n \) and \(W_n \) via (7) and (1). Analogous asymptotic representations hold for \(D_n^+ \) and \(D_n^- \). The first asymptotic representation of (10) for \(D_n \) is true because \(E(\xi_n) = \sigma^2(\xi_n) = 1 \) and hence \(n/S(n+1) \rightarrow 1 \) and \(\xi_{n+1}/n^{1/2} \rightarrow 0 \), while the second asymptotic representation of (10) is the consequence of \(\xi_{\lfloor nt \rfloor}/n^{1/2} \rightarrow 0 \) uniformly in \(t \). The \(X_n \) of (10) satisfy the conditions of Theorem B and the usual Kolmogorov-Smirnov theorems follow. For \(\Delta_n \) we have (9) with \(n \) replaced by \(\nu_n \) on both sides. Now we show

\[\Delta_n = \sup_t \left| Y_n^*(t, \omega) \right|, \quad \text{for } n \text{ large}, \]

(11)

\[\Delta_n = \sup_t \left| Y_n(t, \omega) \right|, \quad \text{for } n \text{ large}, \]

where \(Y_n^* \) and \(Y_n \) are respectively defined in terms of the above \(\xi_n \) and \(W_n \) via (8) and (3); we also have the analogous asymptotic expressions for \(\Delta_n^+ \) and \(\Delta_n^- \). It is true in general that if \(\{Z_n\} \) is a sequence of random variables such that \(Z_n \overset{\text{b.a.}}{\rightarrow} Z \) and \(\{\nu_n\} \) is a sequence of
positive-integer-valued random variables such that \(\nu_n \xrightarrow{P} + \infty \), then
\[Z_n \xrightarrow{P} 1. \]
Now condition (4) of Theorem 1 implies \(\nu_n \xrightarrow{P} 1 \) and we have
\[n/S(n+1) \xrightarrow{a.s.} 1. \]
Consequently, \(\nu_n/S(\nu_n+1) \xrightarrow{P} 1 \). Using the fact that the \(\xi_n \) are exponential random variables with mean 1 and that
\[\nu_n \xrightarrow{P} + \infty, \]
it can be easily shown that \(\xi_{n+1}/\nu_n^{1/2} \) and \(\xi_{[\nu_n]}+1/\nu_n^{1/2} \) both converge in probability to zero, the latter one uniformly in \(t \). Hence both asymptotic representations of (11) are true. Also, given condition (4), the \(Y_n \) of (11) satisfy the conditions of Theorem 1 and hence
\[Y_n \approx W^0. \]
The statements of Theorem 2 now follow from Corollary 1.

Remark 2. Theorem 2 with \(\nu = 1 \) in (4) was proved by R. Pyke [6] in an interesting and different way, utilizing results about stochastic processes with two-dimensional parameter sets. We should also note that proving appropriate versions of Theorem 1, random-sample-size versions of the Kolmogorov-Smirnov theorems with weight functions like
\[f(t) = 1/t, \quad 1/(1 - t) \quad \text{and} \quad 1/[\mu(1 - t)]^{1/2}, \]
which are important in applications, can also be proved in a similar way as well as two or more-sample random-sample-size versions. Statements and proofs for these results will also appear in [4].

References

McGill University, Montreal, Quebec, Canada

József Attila University, Szeged, Hungary

Mathematisches Institut der Universität, Wien, Austria