DIMENSION AND MULTIPlicity
FOR GRADED ALGEBRAS

BY WILLIAM SMOKE

Communicated by David A. Buchsbaum, December 24, 1969

We want to reconsider a problem that goes back to Hilbert \[3\]. Let \(R = \sum R^p \) be a commutative algebra which is graded by the nonnegative integers and finitely generated over \(R^0 = F \), which for simplicity is a field. Let \(M = \sum M^p \) be a finitely generated graded \(R \)-module, with \(p \) again restricted to the nonnegative integers. Each component \(M^p \) is a finite-dimensional vector space over \(F \). If \(R \) is generated over \(F \) by elements homogeneous of degree one then Hilbert proved that there is a polynomial

\[
H_M(p) = e(M)\frac{p^{n-1}}{(n - 1)} + \cdots
\]

such that \(H_M(p) = \dim M^p \) for \(p \) large. With the understanding that the zero polynomial is of degree \(-1\), we may call \(n \) the dimension of \(M \). The coefficient \(e(M) \) is a nonnegative integer, the multiplicity of \(M \).

Unfortunately, if \(R \) is not generated by elements of degree one, it is not usually true that \(\dim M^p \) is eventually given by a polynomial in \(p \). (For example, let \(M = R = F[x] \) where \(x \) is an indeterminant of degree two.) The more general case, where the generators of \(R \) are of degree greater than one, arises naturally. We need a substitute for the Hilbert polynomial and it turns out that the Poincaré series

\[
P(M) = \sum (\dim M^p)t^p
\]

of the module is a good substitute. In the classical situation the relation between \(H_M \) and \(P(M) \) is such that \(H_M \) is of degree at most \(n - 1 \) if and only if \((1 - t)^nP(M)\) is a polynomial in \(t \). Moreover, if \(H_M \) is of degree exactly \(n - 1 \) then \(e(M) \) is the value of \((1 - t)^nP(M)\) for \(t = 1 \). We intend to show how these facts generalize. The details of the proofs will be given elsewhere.

In \[4\] Serre gave a homological treatment of dimension and multiplicity for local rings. Following Serre, we wish to define the multi-

AMS Subject Classifications. Primary 1390; Secondary 1393.

Key Words and Phrases. Dimension, multiplicity, graded algebra, Hilbert polynomial, Poincaré series, Grothendieck group, Euler characteristic, minimal resolution, global dimension, polynomial algebra, Koszul complex.

1 This research was supported by the National Science Foundation Grant GP-12635.
plicity of a graded module M as an Euler characteristic of the complex
\[\text{Tor}^R(F, M) = \sum \text{Tor}_i^R(F, M). \]

Let $C(R)$ be the category of all finitely generated graded modules over R, and all homomorphisms which are homogeneous of degree zero. Each $\text{Tor}_i^R(F, M)$ is a finite-dimensional graded vector space, a module of the category $C(F)$. As Fraser [2] has observed, it is natural to consider the Grothendieck groups $K(R)$ and $K(F)$ of the two categories, and attempt to define a multiplicity homomorphism $\chi_R: K(R) \to K(F)$. We set
\[\chi_R(M) = \sum (-1)^i [\text{Tor}_i^R(F, M)] \]
where $[\text{Tor}^R(F, M)]$ is the image in $K(F)$. This makes sense if $\text{Tor}^R(F, M)$ is a finite complex. Surprisingly, the formula makes sense in the “completion” of $K(F)$ whether or not $\text{Tor}^R(F, M)$ is finite. Since a graded vector space V is determined by the dimensions of its components, associating to V its Poincaré polynomial $P(V)$ identifies $K(F)$ with the polynomial ring $\mathbb{Z}[t]$ over the integers. Using Eilenberg’s technique [1] of minimal resolutions it is easy to prove a lemma which insures that the above alternating sum is a well-defined formal power series in t.

Lemma. The pth component of $\text{Tor}_i^R(F, M)$ is zero if $p < i$.

From the long exact sequence for Tor we have a homomorphism $\chi_R: K(R) \to \mathbb{Z}[t]$ into the formal power series ring.

If every module in $C(R)$ has a finite resolution by free modules in $C(R)$, i.e., if $C(R)$ is of finite global dimension, then χ_R has values in the polynomial ring $\mathbb{Z}[t]$. In this case it is also true that $K(R)$ is a ring, with the product of two of the generators given by
\[[M][N] = \sum (-1)^i [\text{Tor}_i^R(M, N)]. \]
This formula always makes sense in case one of the modules is free. The free modules of $C(R)$ are all of the form $R \otimes_F V$ for V in $C(F)$. Thus in general $K(R)$ is a module over $K(F) = \mathbb{Z}[t]$.

Theorem 1. For any R, $\chi_R: K(R) \to \mathbb{Z}[t]$ is a homomorphism of $\mathbb{Z}[t]$-modules. If $C(R)$ has finite global dimension then $\chi_R: K(R) \to \mathbb{Z}[t]$ is a ring isomorphism.

Associate to a graded finite-dimensional vector space its total dimension. This yields a ring homomorphism $\text{dim}: \mathbb{Z}[t] \to \mathbb{Z}$ which is the natural augmentation, the function which assigns to a polynomial
its value for $t = 1$. If $C(R)$ is of finite global dimension then composing with χ_R gives a ring homomorphism $e_R: K(R) \to \mathbb{Z}$ and we have Serre's definition of the multiplicity in our situation:

$$e_R(M) = \sum (-1)^i \dim \text{Tor}^R_i(F, M).$$

The category $C(R)$ is of finite global dimension if (and probably only if) R is a polynomial algebra $F[x_1, \ldots, x_n]$ generated by indeterminants which are homogeneous of positive degrees. In this case the Koszul complex can be used to compute multiplicities. Let $H_i(x, M)$ be the ith homology module of the Koszul complex of $x = (x_1, \ldots, x_n)$ and M.

Theorem 2. Let $R = F[x_1, \ldots, x_n]$ be a polynomial algebra generated by indeterminants of positive degrees d_1, \ldots, d_n. Then

$$\chi_R(M) = \sum (-1)^i [H_i(x, M)].$$

In particular, $\chi_R(F) = \prod (1 - t^{d_i})$.

In the classical situation the indeterminants are all of degree one, so $\chi_R(F) = (1 - t)^n$. This suggests the following theorem, which relates the multiplicity of a module to its Poincaré series.

Theorem 3. For any R and any M in $C(R)$, $\chi_R(M) = \chi_R(F)P(M)$.

Corollary 1. If $C(R)$ is of finite global dimension then $\chi_R(F)P(M)$ is a polynomial in t and $e_R(M)$ is the value of this polynomial for $t = 1$.

We can always reduce to the case of finite global dimension by regarding R as a quotient of a polynomial algebra S. An R-module M becomes an S-module. The Poincaré series is unaffected, and $\chi_S(M)$ and $\chi_S(F)$ are polynomials.

Corollary 2. $\chi_R(M) = P(M)/P(R)$, and $P(M)$ and $\chi_R(M)$ are rational functions.

The relation $\chi_R(M) = P(M)/P(R)$ follows from the fact that $\chi_R(F)P(R) = \chi_R(R) = 1$.

Corollary 3. $\chi_R(M) = 0$ if and only if $M = (0)$.

Call M of dimension at most n if there are positive integers d_1, \ldots, d_n such that $P(M)\prod (1 - t^{d_i})$ is a polynomial in t.

Theorem 4. The R-module M is of dimension at most n if and only if there exist homogeneous elements y_1, \ldots, y_n in R such that M is finitely generated over the subalgebra $F[y_1, \ldots, y_n]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If \(P(M) \prod (1 - t^{d_i}) \) is a polynomial it is not true that we can always choose \(y_1, \ldots, y_n \) of degrees \(d_1, \ldots, d_n \). For example, let \(M = R = F[x, y] \) where \(x \) is an indeterminant of degree two and \(y \) is a non-zero element of degree one with \(y^2 = 0 \). The Poincaré series is

\[
P(M) = \frac{1 + t}{1 - t^2} = \frac{1}{1 - t}
\]

but \(R \) contains no element \(y_1 \) of degree one with \(M \) finitely generated over \(F[y_1] \).

Corollary. If \(R = F[y_1, \ldots, y_n] \) then every \(M \) in \(C(R) \) is of dimension at most \(n \).

References

Université of California, Irvine, California 92664