ON PARALLELISM IN RIEMANNIAN MANIFOLDS

BY ALAN B. PORITZ

Communicated by Philip Hartman, December 15, 1969

The definition of parallelism along a curve in a Riemannian manifold extends to higher dimensional submanifolds. This note is to announce a local existence and uniqueness theorem, Theorem B(p), for the extended definition. A proof of the theorem in the C^∞ category will appear in [2]. A proof, in the C^0 category, under somewhat weaker conditions, will appear in [1]. A global C^∞ version under stronger assumptions appears in [3]. This note ends with a sketch of a new proof of Theorem B(p).

Let $g: N^p \to M^m$ be a (not necessarily isometric) smooth (that is, C^∞ or C^0) immersion of Riemannian manifolds. Let E be a euclidean vector bundle over N and F a euclidean vector bundle over M. A vector bundle map $G: E \to F$ is a vector bundle isometry along g provided that G sends the fibers $E(n)$ isometrically into the fibers $F(g(n))$. When E and F are the tangent bundles ($T(N^p)$ and $T(M^m)$), G is called a tangent bundle isometry (T.B.I.) along g. The normal bundle to a T.B.I. G is the $m-p$ dimensional vector bundle $G \perp$ over N whose fiber over $n \in N$ is the orthogonal complement $\perp G(N_n)$ to $G(N_n)$ in $M_{g(n)}$. The second fundamental form of G, $\Pi_g: G \perp \to \text{Hom}(T(N), T(N))$ is a vector bundle map defined as follows. Given $v \in \perp G(N_n)$ and $x, y \in N_n$ extend y to a vector field Y on N in some neighborhood of n, let ∇ be the covariant derivation on M and put

$$\langle \Pi_g(v)x, y \rangle_n = -\langle \nabla_{Tg(x)}G(Y), v \rangle_{g(n)}.$$

The definition is independent of the choice of Y.

G is parallel along g if (trace)$ \cdot \Pi_g: G \perp \to \mathbb{R}$ vanishes identically. It was shown in [1] that this definition is a generalization to higher dimensional immersed submanifolds, of the classical notion of parallelism along a curve. The significant facts are the following.

Every unit vector field along a curve $g: N^1 = (a, b) \to M$ corresponds in a natural way to a T.B.I. along g. Under this correspondence, parallel vector fields are paired with parallel T.B.I.'s.

An immersion $g: N^p \to M^m$ is isometric if and only if its tangent map

AMS Subject Classifications. Primary 5372, 5304, 5370, 5374, 3503; Secondary 3596, 5730, 5720.

Key Words and Phrases. Parallelism, least area variational problem, minimal immersion, vector bundle isometry, parallel tangent bundle isometry, second fundamental form, normal bundle, Cauchy-Kowalewski Theorem.

1 Partial support by NSF Contract GP-4503 was received during the preparation of this paper.
$Tg:TN\rightarrow TM$ is a T.B.I. In such a situation, g is a minimal immersion if and only if Tg is parallel along g. Thus for every $p, 1 \leq p < m$, the critical manifolds of the calculus of variations problem for minimal p dimensional "area" are exactly the p dimensional autoparallels (i.e. the isometric immersions whose tangent maps are parallel).

Below, the same letter is used to designate a distribution on a manifold and the subbundle of the tangent bundle that it determines. If E is a vector bundle over Y and $i:X\rightarrow Y$ is a smooth map then $i_*:i^*E\rightarrow E$ is the induced map of the induced bundle.

Theorem B(p). Let $g:N^p\rightarrow M^m$ be an (not necessarily isometric) immersion of Riemannian manifolds. Let H be a $(p-1)$ dimensional distribution on N^p and (N^p, i) a homeomorphically embedded integral manifold of H. Suppose there is given as initial data:

1. $G^{p-1}:H\rightarrow T(M)$, a vector bundle isometry along g, and
2. $G^p:T(N^p)\rightarrow T(M)$, a vector bundle isometry along $g\cdot i$.

It is assumed that G^{p-1} and G^p are compatible:

$$G_i^p|_H=G^{p-1}, i_*:i^*H\rightarrow T(M).$$

Then, if the data is all C^∞, there is a neighborhood U of N^{p-1} in N^p and a unique parallel C^∞ T.B.I. $G:T(U)\rightarrow T(M)$ that extends the initial data:

$$G|_H=G^{p-1}:H\rightarrow T(M) \text{ along } g|_U \text{ and }$$

$$G\cdot i_* = G^p:i^*T(N^p)\rightarrow T(M) \text{ along } g\cdot i.$$
\{Z_i, \ldots, Z_p = \partial/\partial z_p\} on \ V \ and \ \{Y_i, \ldots, Y_m\} along g|_V \ with \ the \ property \ that \ a \ C^\infty \ T.B.I. \ G \ defined \ along \ g|_V \ extends \ the \ initial \ data \ along \ g|_V \ if \ and \ only \ if \ its \ matrix \ representation \ (r_{ki}) \ with \ respect \ to \ these \ frames \ (G(Z_i) = \sum_k r_{ki}, Y_k, i = 1, \ldots, p) \ satisfies \ the \ equations

\[r_{ki} = \delta^{ki}, \quad k = 1, \ldots, m, \quad i = 1, \ldots, p - 1,\]

on \ V

and

\[r_{ip} = 0, \quad \ldots, \quad r_{p-1, p} = 0\]
on \ V \ \cap \ N^{p-1}.

It follows that the T.B.I.'s \ G \ that extend the initial data on \ V \ are in bijective correspondence with the \(m - p\) tuples \((r_{p+1, p}, \ldots, r_{mp})\) of \(C^\infty\) functions on \ V \ that vanish on \(N^{p-1} \cap V\). The condition that \ G \ be parallel along \ g|_V \ is expressed by the vanishing, for each \(n \in V\), of the projection of \(\sum_{i=1}^p \nabla z_i(n) G(Z_i) \) into \(LG(N^p)\). On some, perhaps smaller, neighborhood of \(\mathcal{H}\) this condition is equivalent to the Cauchy-Kowalewski system:

\[0 = \left< \sum_{i=1}^p \nabla z_i(n) G(Z_i), Y_j(n) \right> \]

\[= \left< \sum_{i=1}^{p-1} \nabla z_i(n) Y_i, Y_j(n) \right> + \sum_{l=p}^m r_{ip} \left(\nabla z_p(n) Y_l, Y_j(n) \right) + \frac{\partial r_{ip}}{\partial z_p}(n), \]

\[j = p + 1, \ldots, m.\]

Thus, on some sufficiently small neighborhood \(V^\#\) of any point \(\mathcal{H} \in N^{p-1}\), there is a unique \(C^\infty\) parallel T.B.I. \(G^\#\) that extends the initial data along \(g|_V^\#\). A neighborhood \(U\) of \(N^{p-1}\) in \(N^p\) can then be constructed on which there is a unique \(C^\infty\) parallel T.B.I. \(G\) that extends the initial data along \(g|_U\) so that for each \(\mathcal{H} \in N^{p-1}: G|_{UN^p} = G^\#|_{UN^p^\#}.

BIBLIOGRAPHY

2. ———, *A generalization of parallelism in Riemannian geometry; The \(C^0\) case*, J. Differential Geometry (to appear).

UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19104