GROMOLL GROUPS, Diff S^n AND BILINEAR CONSTRUCTIONS OF EXOTIC SPHERES

BY P. ANTONELLI, D. BURGHELEA AND P. J. KAHN

Communicated by William Browder, February 20, 1970

1. Introduction and main results. The Kervaire-Milnor group Γ^n has a filtration by subgroups,

$$0 = \Gamma^n_{a-1} \subset \cdots \subset \Gamma^n_{k+1} \subset \Gamma^n_k \subset \cdots \subset \Gamma^n_1 = \Gamma^n,$$

due to Gromoll [9], which we study by means of certain homomorphisms

$$\pi_p(SO_q) \otimes \pi_q(SO_p) \quad \Gamma^{p+1} \otimes \pi_q(SO_p) \quad \sigma_{p,q} \quad \tau_{p+1,q} \quad \Gamma^{p+q+1}$$

See [12] for definitions. The pairing σ was first introduced by Milnor [13] and has been studied in [3], [11]. The pairing τ has been studied in [8], [10].

The groups of Gromoll are related to the homotopy groups of Diff S^n by a simple pasting construction: namely, there are homomorphisms $\lambda_i: \pi_i(Diff S^n) \to \Gamma^{n+i+1}$ with image $\lambda_i = \Gamma^{n+i+1}_{i+1}$ (see Proposition 2.1 and also [9, §1]).

We shall detect nontrivial elements in some Γ^{n}_{k+1}. Note that $\Gamma^{n}_{k+1} \neq 0$ implies that $\Gamma^{n+i}_{i+1} \neq 0$ and, hence, $\pi_i(Diff S^{n+i+1-1}) \neq 0$, for all $i \leq k$. For slightly sharper statements see Proposition 3.3 and Proposition 3.4.

1.1. Theorem. (a) $\Gamma^{4k+1}_{2k-2} \neq 0$, for all $k \geq 4$.
(b) $\Gamma^{4k+2}_{2k} \neq 0$, for all $k \geq 0$, $k \neq 2l - 1$.

Here $v(k)$ is the maximum number of linearly independent vector fields on S^{2k+1}. It is well known that $v(k) = 1$ when k is even and $v(k) \geq 3$, when k is odd. Its precise value is given in [2].

Theorem 1.1 follows from some of our results on σ. Corollary 3.5, below, also based on work with σ, actually establishes fairly large lower bounds for the order of Γ^{4k+1}_{2k-2} (with some restrictions on k).

AMS Subject Classifications. Primary 5710, 5755; Secondary 5322.

Key Words and Phrases. Kervaire-Milnor group of exotic spheres, Γ^n, Gromoll filtration of Γ^n, group of self-diffeomorphisms, homotopy type of CW complex, homotopy-abelian H-space, inertia groups of manifolds, sectional curvature, pinching,

bilinear pairings of Milnor-Munkres-Novikov.

1 Work of all authors supported in part by National Science Foundation.
1.2. **Theorem.** (a) Let Q be an odd prime, and let u and v be integers satisfying $0 < u < Q - 1$, $u - v
eq Q - 1$. Write $n = 2(uQ + v + 1)(Q - 1) - 2(u - v) - 1$. Then, $\Gamma_{Q-2}^{n} \cong \mathbb{Z}_Q$. (b) Γ_2^n and Γ_0^n are nontrivial.

Theorem 1.2 is proved using τ (see Proposition 3.2). It generalizes results in [16].

1.3. **Theorem.** Diff S^n cannot be dominated by a finite CW complex, provided $n \geq 7$.

In particular, for this range of values of n, Diff S^n is not dominated by a finite-dimensional Lie group. This answers a question raised by J. Eells and R. Palais.

Theorem 1.3 contrasts with the fact that, for $n = 1, 2$, Diff S^n has the homotopy type of SO_{n+1} [18]. The only undecided dimensions, therefore, are $n = 3, 4, 5, 6$.

In §2 we deduce Theorem 1.3 from Theorem 1.1 (a) and Theorem 1.2 (b). In §3, we describe our results on σ and τ and give a table of low-dimensional computations. In §4, we relate our results to the inertia groups $I(\Sigma^n \times S^n)$, and we comment on Gromoll's pinching numbers δ_n.

We would like to thank J. Milnor and N. Kuiper for their stimulating suggestions.

2. **Proof of Theorem 1.3.** Diff S^n (resp., Diff(S^n, D^+_n)) is the group of all C^∞, orientation-preserving diffeomorphisms of S^n (resp., those which keep fixed the upper hemisphere D^+_n). Give it the C^∞ topology. SO_{n+1} is a closed subgroup of Diff S^n. It is well known ([7], [17]) that Diff S^n and Diff(S^n, D^+_n) have the homotopy type of countable CW complexes and that the map $SO_{n+1} \times$ Diff$(S^n, D^+_n) \to$ Diff S^n defined by group-multiplying the inclusions

$$SO_{n+1} \subset \text{Diff } S^n \supset \text{Diff } (S^n, D^+_n)$$

is a homotopy equivalence.

2.1. **Proposition.** (a) The multiplication of Diff(S^n, D^+_n) is homotopy-abelian.

(b) Let $\lambda_i: \pi_i(\text{Diff } S^n) \to \Gamma_i^{n+1}$ be as in §1, and let μ_i be its restriction to the direct summand $\pi_i(\text{Diff } (S^n, D^+_n))$. Then image $\mu_i = \Gamma_i^{n+1}$.

Let $A_n = \text{Diff } (S^n, D^+_n)$ and note that $\pi_1 A_n = H_1 A_n$.

2.2. **Proof of Theorem 1.3.** If Diff $S^n \sim SO_{n+1} \times A_n$ is dominated by a finite CW complex, for some n, then so is A_n, and so $H_*(A_n; \mathbb{Z}_p)$ is finitely-generated, for all primes p. According to Browder [6],
therefore, $H_\bullet A_n$ has no torsion. In particular, $\pi_1 A_n = H_1 A_n$ is free-abelian. Thus, the projective class group $K_0(\pi_1 A_n)$ vanishes, so that A_n has the homotopy type of a finite CW complex (Wall [21]). It now follows from Hubbuck [10] that the identity component of A_n has the homotopy type of a point or of a product of circles, so that $\pi_i A_n = 0, i \geq 2$.

Theorem 1.1 (a) and Theorem 1.2 (b), together with Proposition 3.2 and the subsequent remark, imply that $\pi_1 A_7$ and $\pi_1 A_8$ have elements of finite order and that, for $n \geq 9$, there is some $i \geq 2$ such that $\pi_i A_n \neq 0$. Thus, $n \leq 6$ as desired. This completes our proof.

Note that when $\pi_1 A_n$ has elements of finite order Browder's theorem alone implies that $\text{Diff } S^n$ is not finitely dominated. Our results on the τ-pairing (Theorem 1.2 and Proposition 3.2) yield infinitely many such n, but not enough to prove Theorem 1.3.

3. The pairings σ and τ. The Gromoll groups are related to σ and τ by the next two propositions. Let $\mu_i:\pi_i(\text{Diff}(S^n, D^*_n)) \to \Gamma^{n+i+1}$ be as in Proposition 2.1 (b).

3.1. Proposition. For any a, b, $0 \leq a \leq q$, $0 \leq b \leq p$, let $i_a:\pi_p(SO_{q-a}) \to \pi_p(SO_q)$ and $i_b:\pi_q(SO_{p-b}) \to \pi_q(SO_p)$ be the homomorphisms induced by the standard inclusions. Write $c = a + b + 1$. Then, there is a homomorphism

$$
g_{c}:\pi_p(SO_{q-a}) \otimes \pi_q(SO_{p-b}) \to \pi_c(\text{Diff}(S^{p+a-q}, D^*_c))$$

such that $\mu_g = \sigma_{p,q} \circ (i_a \otimes i_b)$.

In particular, $\text{image } (\sigma_{p,q} \circ (i_a \otimes i_b)) \subset \Gamma^{p+q+1}$.

3.2. Proposition. For every $q > 1$, there is a homomorphism

$$h_q: \Gamma^{p+1} \otimes \pi_q(SO_p) \to \pi_q(\text{Diff}(S^p, D^*_p))$$

such that $\mu_{h_q} = \tau_{p+1,q}$.

In particular, $\text{image } \tau_{p+1,q} \subset \Gamma^{p+q+1}$.

Remark. Note that domain $\tau_{p+1,q}$ is finite, so that if image $\tau_{p+1,q}$ \neq 0, then $\pi_q(\text{Diff}(S^p, D^*_p))$ has elements of finite order.

To prove Theorem 1.2, we follow Novikov [16] and map $\tau_{p+1,q}$ into the composition pairing in stable homotopy. Then we apply results of Toda [19], [20].

The nonzero elements in Theorem 1.1 (b) are Kervaire spheres (which, of course, come from σ). We prove Theorem 1.1 (a), for large k, by applying the Eells-Kuiper μ-invariant, as in [11], to Milnor’s plumbing construction [13] and by using the Barratt-Mahowald Splitting Theorem to show that μ takes the same values on image $\sigma_{4s-1,4s-1} \circ (i_a \otimes i_b)$ as on the entire image $\sigma_{4s-1,4s-1}$, provided $4s-1-a$
For small k, we use Milnor’s method [13] applied to the μ-invariant.

For sharper results on σ, we generalize some work of D. R. Anderson [3] and again apply the Barratt-Mahowald Splitting Theorem. To describe our conclusions, let

$$j_m = \text{order image } J_{4m-1} \quad \text{and} \quad b_m = (2^{2m-1} - 1) B_m a_m j_m / 2m,$$

where B_m is the mth Bernoulli number, and $a_m = 1$ or 2, according as m is even or odd. Write

$$p_{r,s} = b_{r+s} / \gcd(b_{r+s}, b_r b_s).$$

3.3. PROPOSITION. Let r and s be integers satisfying $r\geq 6$, $s\geq 6$, $r < 2s < 4r$, and write $t = r + s$. Then, $\text{G}^{u+1}_{2t-2} \cap bP_{4t}$ contains a cyclic group of order $p_{r,s}$.

3.4. PROPOSITION. (a) Let r, s, t be as in 3.3. Then $p_{r,s}$ is odd and

$$p_{r,s} > \frac{1}{8}(2t - 1) \left(\frac{2t - 2}{2r - 1} \right) j_t / j_s.$$

(b) Write $r = 2^d (2e+1)$. Then $p_{r,s} > 2^{2r-d-9}$.

REMARKS. The lower bound $\frac{1}{8}(2t-1) \left(\frac{2t-2}{2r-1} \right) j_t / j_s$ is often large. For example, if r and s are primes, $7 \leq r < s < 2r$. Then, this bound is larger than $2^{r+s-8} / (2r+1)(2s+1)$. Much stronger but more complicated statements are possible.

When $r = s$, Proposition 3.3 is essentially Anderson’s Theorem 1, [3], combined with Proposition 3.1. The proof of 3.4 involves complicated but elementary number theory.

We now display some divisors of G_2^k, k and n small. Results of [14], [15], [19], [20] are used for some of the calculations. Recall that $\text{G}_1^n = \text{G}_n$ and $\text{G}_{k+1}^n \subseteq \text{G}_k^n$. According to Cerf, $\text{G}_2^n = \text{G}_1^n$, for all n. For the reader’s convenience, we give the order of $\text{G}_2^n = \text{G}_1^n = \text{G}_n$ precisely.

<table>
<thead>
<tr>
<th>$k \setminus n$</th>
<th>13</th>
<th>15</th>
<th>19</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>16,256</td>
<td>523,264</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4,064</td>
<td>2,044</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2,032</td>
<td>2,044</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1,016</td>
<td>2,044</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>508</td>
<td>1,022</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td>511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td>511</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some divisors of order (G^n)
When entries are omitted for \(n \leq 22 \), this means that our techniques give no additional information.

4. Remarks on \(I(\Sigma^{p+1} \times S^q) \) and the Gromoll numbers \(\delta_n \).

4.1. \(I(\Sigma \times S^q) \subset \Gamma_{q+1}^{p+1} \), for all \(\Sigma \in \Gamma^{p+1} \) and \(q \geq 2 \).
This follows from 3.2 and DeSapio's results on the \(\tau \)-pairing [8].

4.2. When \(p \geq 2q-1 \), some \(I(\Sigma^{p+1} \times S^q) \) have elements of odd prime order.
This follows from Theorem 2.1 and DeSapio [8], and it contrasts with the fact, deducible from [4], that \(I(\Sigma^{p+1} \times S^q) \) is 2-primary when \(p < 2q-1 \).

4.3. There are spheres in image \(\sigma \) which are not in image \(\tau \).
This follows from the last assertion in 4.2, together with 3.3 and 3.4 (a).

4.4. In [9], Gromoll defines an increasing sequence of real \(\delta_k \) satisfying \(\delta_1 = 1/4 \) and \(\lim \delta_k = 1 \). He proves that if the sphere \(\Sigma^n \) can be \(\delta_k \)-pinched, then \(\Sigma^n \subset \Gamma_k \). Since \(\Gamma_{n-2} = 0 \), [18], \(\Sigma^n \) can be \(\delta_{n-2} \)-pinched only if \(\Sigma^n \) is diffeomorphic to \(S^n \).

Question 1. Can every sphere in \(\Gamma_k \) be \(\delta_k \)-pinched?
This probably asks too much, since no examples of riemannian exotic spheres admitting positive sectional curvature are known.

Call \(\delta \) \(N \)-universal if \(0 < \delta \leq 1 \) and if \(\Sigma^n \delta \)-pinched and \(n \geq N \) imply \(\Sigma^n \) diffeomorphic to \(S^n \).

Question 2. Does an \(N \)-universal \(\delta \) exist, for some \(N \)?
Question 2 was asked by Gromoll [9].

We simply remark here that an affirmative answer to either question implies a negative answer to the other, because \(\Gamma^{4k-2} \neq 0 \), \(k \geq 4 \).

References

1. J. F. Adams, On the groups \(J(X) \), IV, Topology 5 (1966), 21-71; correction, ibid., 7 (1968), 331. MR 33 #6628; MR 37 #5874.

Institute for Advanced Study, Princeton, New Jersey 08540