NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS
AND THE GENERALIZED TOPOLOGICAL DEGREE

BY FELIX E. BROWDER

Communicated March 9, 1970

Introduction. It is our purpose in the present note to present a
general existence theorem for noncoercive elliptic boundary value
problems for operators of the form:

\[A(u) = \sum_{|\alpha| = m} (-1)^{|\alpha|} D^\alpha A_\alpha(x, u, \ldots, D^mu), \]

on closed subspaces \(V \) of the Sobolev space \(W^{m,p}(G) \), \(G \) an open subset
of \(\mathbb{R}^n \), \(n \geq 1 \). This existence theorem is based upon an extension of the
theory of the generalized topological degree for \(A \)-proper mappings
of Banach spaces introduced in Browder-Petryshyn [8], [9], and, in
particular, on an extension of the Borsuk-Ulam theorem to pseudo-
monotone mappings \(T \) from a reflexive separable Banach space \(V \) to
its conjugate space \(V^* \).

To make a precise statement of our general existence theorem
possible, we introduce the following notation: For a given \(m \geq 1 \), we
let \(\xi \) be the \(m \)-jet of a function \(u \) from \(\mathbb{R}^n \) to \(\mathbb{R}^s \) for some given \(s \geq 1 \),
i.e. \(\xi = \{ \xi_{\alpha}, |\alpha| = m \} \), and set

\[\xi = \{ \xi_{\alpha} : |\alpha| = m \}, \quad \eta = \{ \eta_\beta : |\beta| \leq m - 1 \}, \]

where each \(\xi_\alpha, \xi_\beta, \) and \(\eta_\beta \) is an element of \(\mathbb{R}^s \). The set of all \(\xi \) of the
above form is an Euclidean space \(\mathbb{R}^{rm} \), and correspondingly, \(\xi \in \mathbb{R}^{rm} \),
\(\eta \in \mathbb{R}^{rm-1} \).

For each \(\alpha \), \(A_\alpha \) is assumed to be a function from \(G \times \mathbb{R}^m \) to \(\mathbb{R}^s \) satisfying
the following conditions:

Assumptions on \(A(u) : (1) A_\alpha(x, \xi) \) is measurable in \(x \) for fixed \(\xi \) and
continuous in \(\xi \) for fixed \(x \). For a given \(p \) with \(1 < p < \infty \), there exists a
constant \(c \) such that

\[|A_\alpha(x, \xi)| \leq c \left(1 + \sum_{|\beta| \leq m} |\xi_\beta|^{p_{\alpha\beta}} \right) \]

with \(p_{\alpha\beta} \leq (p-1) \) for \(|\alpha| = |\beta| = m \), and

AMS 1969 subject classifications. Primary 3547, 3536, 4780, 4785; Secondary 5536.

Key words and phrases. Nonlinear elliptic boundary value problems, generalized
topological degree, Sobolev space, coercive, pseudomonotone, Borsuk-Ulam theorems,
limit of \(A \)-proper mappings.
\[
\phi_{a, \beta} \leq \frac{np}{n - p(m - |\alpha|)} \leq \frac{n^p}{n - p(m - |\beta|)}, \quad \text{if } m - \frac{n}{p} \leq |\alpha| \leq m, \\
\quad m - \frac{n}{p} \leq |\beta| \leq m,
\]

\[
|\beta| + |\alpha| \leq 2m,
\]

\[
\phi_{a, \beta} \leq \frac{np}{n - p(m - |\alpha|)}, \quad \text{if } |\alpha| < m - \frac{n}{p},
\]

\[
m - \frac{n}{p} \leq |\beta| \leq m.
\]

(2) If \(\xi = (\xi', \eta)\), then for each \(x \in G, \eta \in \mathbb{R}^{n-1}\), \(\xi\) and \(\xi'\) in \(\mathbb{R}^n\) with \(\xi \neq \xi'\),

\[
\sum_{|a| = m} \langle A_a(x, \xi, \eta) - A_a(x, \xi', \eta), \xi_a - \xi'_a \rangle > 0,
\]

(\(\langle \cdot, \cdot \rangle\) denotes the inner product in \(\mathbb{R}^n\)).

(3) For each \(\gamma\) and \(\gamma'\) in \(\mathbb{R}^n\),

\[
\sum_{|a| = m} \langle A_a(x, \xi, \eta) - \gamma_a, \xi_a - \gamma'_a \rangle \to \infty \quad (|\xi| \to \infty),
\]

uniformly for bounded \(\eta\).

Let \(W^{m,p}(G)\) be the Sobolev space of \(s\)-vector functions \(u\) such that \(u\) and all its derivatives \(D^a u\) for \(|a| \leq m\) lie in \(L^p(G)\) where \(p\) is the exponent involved in the inequalities of Assumption (1). Then for any \(u\) and \(v\) in \(W^{m,p}(G)\), we may define the generalized Dirichlet form corresponding to the representation (1) by:

\[
(2) \quad a(u, v) = \sum_{|a| \leq m} (A_a(\xi(u)), D^a v),
\]

where

\[
\xi(u) = \{ D^a u : |a| \leq m \}, \quad A_a(\xi(u))(x) = A_a(x, \xi(u)(x)),
\]

\[
(w, v) = \int_G \langle w(x), u(x) \rangle dx, \quad \text{(integration with respect to Lebesgue } n\text{-measure)}.
\]

Theorem 1. Let \(G\) be an open subset of \(\mathbb{R}^n\) with \(G\) bounded and the Sobolev Imbedding Theorem valid on \(G\) (i.e. \(G\) satisfies mild smoothness conditions on its boundary). Let \(A(u)\) be a quasilinear elliptic operator of order \(2m\) on \(G\) of the form

\[
(1) \quad A(u) = \sum_{|a| \leq m} (-1)^{|a|} D^a A_a(\xi(u)),
\]
where the coefficient functions A_α satisfy Assumptions (1), (2), and (3) above. Suppose that $A(u)$ is odd in u, i.e. $A_\alpha(x, -\xi) = -A_\alpha(x, \xi)$ for each α and all x in G, ξ in \mathbb{R}^m. For each w in V^*, the dual space of a closed subspace V of $W^{m,p}(G)$, consider the problem of finding u in V such that $a(u, v) = (w, v)$ for all v in V. Suppose that there exists a continuous function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ such that for each solution u of this problem for any w in V^*,

\[\|u\|_V = \|u\|_{W^{m,p}(G)} \leq \phi(\|w\|_{V^*}). \]

Then for each w in V^*, there exists at least one solution u in V of the problem: $a(u, v) = (w, v)$ for all v in V.

We have used the notation (w, v) in Theorem 1 to denote the pairing between w in V^* and u in V.

Theorem 2. Let G be a bounded, smoothly bounded open set in \mathbb{R}^n (as in Theorem 1), and consider a one-parameter family of operators $A_t(u), t \in [0, 1]$, where for each t,

\[A_t(u) = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha A_\alpha(u); t) \]

and the coefficient functions are continuous in t, uniformly for bounded ξ and all x outside a null set in G. For each t, we take the generalized Dirichlet form

\[a_t(u, v) = \sum_{|\alpha| \leq m} (A_\alpha(u); t, D^n v), \]

where we assume that $A_t(u)$ satisfies Assumptions (1), (2), (3) for each t in $[0, 1]$. Suppose that $A_1(u)$ is odd, and that there exists a continuous function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ such that if $a_t(u, v) = (w, v)$ for some w in V^*, u in V, t in $[0, 1]$ and all v in V, then $\|a_t(u, v) \leq \phi(\|w\|_{V^*})$.

Then the problem: $a_0(u, v) = (w, v)$ for all v in V; has a solution u in V for each w in V^*.

Theorem 2 includes Theorem 1 as the special case in which $A_t(u) = A(u)$ for all t in $[0, 1]$. It also includes the standard existence theorem for $A(u)$ in which the Dirichlet form $a(u, v)$ is assumed to be coercive, i.e.

\[\text{(6)} \quad \text{There exists } c: \mathbb{R}^+ \to \mathbb{R}^1 \text{ with } c(r) \to \infty \text{ as } r \to \infty \text{ such that } a(u, u) \geq c(\|u\|_V)\|u\|_V. \]

Indeed, if $A(u)$ is coercive, and if we set $A_t(u) = A(u) - ta(-u)$ for t in $[0, 1]$, then $A_0(u) = A(u), A_1(u)$ is odd, the Assumptions (1), (2), and (3) hold for every $A_t(u)$, while since $a_t(u, u) = a(u, u) - ta(-u, u) = a(u, u) + ta(-u, -u)$, it follows that
provided that \(\|u\|_V > R \), where \(c(r) > 0 \) for \(r > R \). Suppose that for some \(u \) in \(V \), \(w \) in \(V^* \) and \(t \) in \([0, 1]\), we have

\[
a_t(u, w) = (w, v) \quad (v \in V).
\]

Then:

\[
c(\|u\|_V) \|w\|_V \leq a_t(u, u) = (w, u) \leq \|w\|_{V^*} \|u\|_V,
\]

and as a consequence \(c(\|u\|_V) \|w\|_V \leq \|w\|_{V^*} \) if \(u = 0 \). If we set \(\phi(s) = \sup \{ r : c(r) \leq s \} \), it follows that \(\|u\|_V \leq \phi(\|w\|_{V^*}) \) and by Theorem 2, the equation \(a(u, v) = (w, v) \) \((v \in V) \), has a solution \(u \) in \(V \) for each \(w \) in \(V^* \).

Existence theorems for elliptic boundary problems of this type were first obtained by Višik [15] using compactness arguments and a priori estimates on \((m+1)st\) derivatives. Monotonicity arguments were first applied to these problems in Browder [2], [3], using the basic existence theorem for monotone maps from a reflexive Banach space \(V \) to \(V^* \) proved independently by Browder [2] and Minty [12]. The existence theorem in the coercive case was extended to elliptic operators \(A(u) \) satisfying Assumptions (1), (2), and (3) by Leray-Lions [11]. Borsuk-Ulam theorems for monotone and semimonotone operators in infinite dimensional Banach spaces were first derived by Browder [4], [5], and were first applied to odd, homogeneous, elliptic operators satisfying strong monotonicity conditions by Pohoţăev [14]. Theorem 1 was first obtained under a stronger hypothesis (3)' rather than (3) in Browder [6], together with Assumptions (1) and (2) on \(A(u) \). This is as follows:

(3)' There exist continuous functions \(k(\eta), k_0(\eta) > 0 \) such that

\[
\sum_{|\alpha| \leq m} \langle A_\alpha(x, \zeta, \eta) \xi_\alpha \rangle \geq k_0(\eta) \| \zeta \|^p - k(\eta),
\]

for all \(x \) in \(G \), \(\zeta \) in \(\mathbb{R}^m \), \(\eta \) in \(\mathbb{R}^{m-1} \).

1. Proofs of Theorems 1 and 2 rest upon general results concerning two classes of nonlinear mappings of monotone type from a reflexive Banach space \(V \) to its conjugate space \(V^* \).

DEFINITION 1. Let \(V \) be a Banach space, \(V^* \) its conjugate space, \(T \) a mapping from \(V \) to \(V^* \), Then:

(a) \(T \) is said to be pseudomonotone if for any sequence \(\{ u_j \} \) in \(V \) with \(u_j \) converging weakly to \(u \) in \(V \) such that \(\lim \sup (Tu_j, u_j - u) \leq 0 \), it follows that for any \(v \) in \(V \), \(\lim \inf (Tu_j, u_j - v) \geq (Tu, u - v) \).

(b) \(T \) is said to satisfy condition \((S)_+\) if for any sequence \(u_j \) in \(V \) with
\{u_j\} converging weakly to \(u \) in \(V \) for which \(\lim (Tu_j, u_j - u) \leq 0 \), it follows that \(u_j \) converges strongly to \(u \) in \(V \).

Proposition 1. Suppose that \(A \) satisfies Assumption (1). Then there exists a continuous bounded mapping \(T \) of \(V \) into \(V^* \) for a given closed subspace \(V \) of \(W^{m,p}(G) \) such that for all \(u \) and \(v \) of \(V \), \((Tu, v) = a(u, v)\). If \(A(u) \) satisfies Assumptions (2) and (3), \(T \) is pseudomonotone. If \(A(u) \) satisfies Assumptions (2) and (3)', then \(T \) satisfies condition \((S)_+\).

The proof of Proposition 1 is given in §1 of [7], and Appendix to §1. Pseudomonotonicity was first defined by Brézis in [1] (though our definition differs slightly from his in considering only sequences rather than filters). The condition \((S)_+\) was first defined in connection with the study of nonlinear eigenvalue problems in Browder [6] and is studied in detail in Browder [7], [8].

Theorem 3. Let \(V \) be a reflexive separable Banach space, \(T \) a mapping of \(V \) into \(V^* \) which is pseudomonotone, bounded on bounded sets, and continuous from each finite dimensional subspace of \(V \) to the weak topology of \(V^* \). Then:

(a) If \(T \) is an odd mapping outside of some ball around the origin and if \(T^{-1}(B) \) is bounded for any bounded subset \(B \) of \(V^* \), then \(R(T) \), the range of \(T \), is all of \(V^* \).

(b) If \(\{T_t\} \) is a family of bounded, pseudomonotone, finitely continuous mappings from \(V \) to \(V^* \) which is continuous in \(t \) uniformly on bounded subsets of \(V \), with \(T_0 = T \), \(T_t \) odd outside some ball, and if there exists a function \(\phi : \mathbb{R}^+ \to \mathbb{R} \) such that \(T_t(u) = w \) implies that

\[
\|w\| \leq \phi(t\|u\|) \quad (t \in [0, 1]),
\]

then \(R(T) = V^* \).

Theorem 3 and Proposition 1 together imply the validity of Theorems 1 and 2. Theorem 3 follows from an extension to the class of pseudomonotone mappings from \(V \) to \(V^* \) of the theory of the generalized degree defined for \(A \)-proper mappings of Banach spaces in Browder-Petryshyn [9], [10] and applied to mappings \(T \) from a reflexive \(V \) to \(V^* \) satisfying condition \((S)\) in Chapter 17 of Browder [8]. The basic facts are summarized in the following theorem:

Theorem 4. Let \(V \) be a reflexive separable Banach space, \(V^* \) its conjugate space. Let \(T \) be a mapping from \(V \) to \(V^* \) which is finitely continuous from \(V \) to \(V^* \) (i.e. continuous from each finite dimensional subspace of \(V \) to the weak topology of \(V^* \)) and bounded (i.e. maps bounded subsets of \(V \) into bounded subsets of \(V^* \)). Then:
(a) If T is pseudomonotone, there exists a sequence \(\{ T_j \} \) of finitely continuous, bounded mappings, each satisfying condition \((S)_+\), which converges to T uniformly on every bounded subset of V.

(b) If T satisfies condition \((S)_+\), then T is A-proper in the following sense \([9], [10]\): If B is a closed ball of V, \(\{ V_j \} \) an increasing sequence of finite dimensional subspaces of V whose union is dense in V, and if for each j, u_j is an element of $V_j \setminus B$ such that for a given element w of V^*,

$$\| \phi_j^* T u_j - \phi_j^* w \|_{V_j^*} \to 0 \quad (j \to \infty),$$

where ϕ_j is the injection map of V_j into V, ϕ_j^* the projection map of V^* onto V_j^*, then there exists an infinite subsequence \(\{ u_{j(k)} \} \) converging strongly to an element u of B such that $T(u) = w$.

The proof of Theorem 4 is given in Chapter 17 of Browder \([8]\). The second property tells us that the generalized degree theory of Browder-Petryshyn \([10]\) applies to mappings T satisfying the condition \((S)_+\) (for the details of this application, see \([8]\)). The corresponding generalized degree theory for pseudomonotone maps follows from the convexity of the class of T satisfying \((S)_+\) and the following theorem whose proof will be published elsewhere:

Theorem 5. Let X and Y be Banach spaces, G a bounded open subset of X, and consider an oriented approximation scheme \(\{ (X_n, Y_n, P_n, Q_n) \} \) for mappings T of $\text{cl}(G)$ into Y in the sense of \([10]\). Let Z be a convex family of A-proper mappings from $\text{cl}(G)$ to Y with respect to the given approximation scheme. Let T be a mapping from $\text{cl}(G)$ to Y which is the uniform limit on $\text{cl}(G)$ of mappings T_j from the class Z. Then:

(a) For any sequence \(\{ T_j \} \) from Z converging to T, if w does not lie in $\text{cl}(T(bdry(G)))$, then $\text{Deg}(T_j, G, w)$ is the same for all j sufficiently large and does not depend upon the choice of $\{ T_j \}$. We denote this limit as $\text{Deg}(T, G, w)$.

(b) $\text{Deg}(T, G, w)$ is invariant under homotopy and weakly additive in the sense of Theorem 1 of \([10]\). If $\text{Deg}(T, G, w) \neq \{ 0 \}$ and if $T(\text{cl}(G))$ is closed in Y, then w lies in $\text{cl}(T(G))$.

(c) If T is odd in the sense of Theorem 1 of \([10]\), then $\text{Deg}(T, G, 0)$ consists only of odd integers, and $\text{Deg}(T, G, 0) \neq \{ 0 \}$.

ADDED IN PROOF. Results closely related to Theorem 5 have also been obtained by P. M. Fitzpatrick in connection with his Rutgers Ph.D. dissertation.
BIBLIOGRAPHY

UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637