THE P-SINGULAR POINT OF THE P-COMPACTIFICATION FOR \(\Delta u = Pu \)

BY Y. K. Kwon AND L. Sario

Communicated by F. W. Gehring, April 13, 1970

ABSTRACT. By means of the \(P \)-algebra \(M_p(R) \) of bounded energy-finite Tonelli functions on a Riemannian manifold \(R \), we construct the \(P \)-compactification \(R_p \) of \(R \) as a quotient space of the Royden compactification. The \(P \)-singular point \(s_p \) is explicitly characterized in terms of the density \(P \). The dimension of the space \(\text{PBE}(R) \) of bounded energy-finite \(P \)-harmonic functions on \(R \) is shown to exceed exactly by one the cardinality of the \(P \)-harmonic boundary \(\Delta_P \) if \(s_p \not\in \Delta_P \). If \(s_p \in \Delta_P \) one can replace the density \(P \) by another \(Q \) such that \(\text{dim} \ Q \text{BE}(R) = \text{dim} \ P \text{BE}(R) \) and a \(Q \)-singular point does not exist.

In the study of the equation \(\Delta u = Pu \), \(P \geq 0 \), on a Riemannian manifold \(R \), it is useful to consider the algebra \(M_p(R) \) of bounded energy-finite Tonelli functions. With \(M_p(R) \) one associates the \(P \)-compactification \(R^*_p \) of \(R \) on which every \(f \in M_p(R) \) has a continuous extension (Nakai-Sario [4]). An interesting phenomenon is the occurrence of the \(P \)-singular point \(s \in R^*_p \) defined by \(f(s) = 0 \) for every \(f \in M_p(R) \).

In the present note we construct \(R^*_p \) as a quotient space of the Royden compactification \(R^* \). Necessary and sufficient for the existence of an \(s \) is that \(1 \not\in M_p(R) \). If an \(s \) exists, it is unique. We shall give an explicit characterization of \(s \) in terms of \(P \), thus establishing a link with a property considered by Glasner and Katz [2].

We then show that if \(s \) lies on the \(P \)-harmonic boundary \(\Delta_P \), the cardinality of \(\Delta_P \) exceeds exactly by one the dimension of the space of bounded energy-finite \(P \)-harmonic functions on \(R \).

If \(s \) does not lie on \(\Delta_P \), it is removable in the sense that there exists a density \(Q \) on \(R \) without a \(Q \)-singular point such that \(\text{dim} \ Q \text{BE}(R) = \text{dim} \ P \text{BE}(R) = \text{the cardinality of} \Delta_P \).

1. On a smooth Riemannian \(n \)-manifold \(R \), \(n \geq 2 \), consider \(P \)-
harmonic functions, i.e. solutions of the elliptic partial differential equation

$$\frac{1}{\sqrt{g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x^i} \left(\sqrt{g} g^{ij} \frac{\partial u}{\partial x^j} \right) = Pu.$$

Here $x = (x^1, \cdots, x^n)$ is a local coordinate, (g^{ij}) the inverse of the matrix (g_{ij}) of the fundamental metric tensor of \mathbb{R}, g the determinant of (g_{ij}), and $P (\neq 0)$ a nonnegative continuous function on \mathbb{R}.

Denote by $M_P(\mathbb{R})$ the algebra of bounded Tonelli functions f on \mathbb{R} with finite energy integrals $E_R(f) = E_R(f, f)$. Here the inner product $E_R(f, g)$ is defined by

$$E_R(f, g) = \int_{\mathbb{R}} \left[\sum_{i,j=1}^{n} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial x^j} + Pf \right] dV,$$

with dV the volume element. $\star 1$

Let $f \in M_P(\mathbb{R})$. Given a regular subregion Ω of \mathbb{R}, construct the function u on \mathbb{R} such that $u = f$ on $\mathbb{R} - \Omega$ and $\Delta u = Pu$ on Ω. The energy principle (Royden [5]) reads

$$E_B(u) \leq E_R(f), \quad u \in M_P(\mathbb{R}).$$

If $g \in M_P(\mathbb{R})$ and $g \equiv 0$ on $\mathbb{R} - \Omega$, then $E_R(g, u) = 0$.

2. Denote by $M(\mathbb{R})$ the Royden algebra and by R^* the Royden compactification of \mathbb{R} (cf. e.g. Chang-Sario [1] and Sario-Nakai [6]). In view of $M_P(\mathbb{R}) \subseteq M(\mathbb{R})$ every function $f \in M_P(\mathbb{R})$ has a continuous extension to R^*.

2. For $x, y \in R^*$ set $x \sim y$ if $f(x) = f(y)$ for all $f \in M_P(\mathbb{R})$. Clearly "\sim" is an equivalence relation. Denote by R^*_p the quotient space R^*/\sim. Let $\pi_P : R^* \to R^*_p$ be the natural projection.

Proposition 1. The space R^*_p endowed with the quotient topology is a compact Hausdorff space and contains \mathbb{R} as a connected open dense subset.

Proposition 2. Every function in $M_P(\mathbb{R})$ has a continuous extension to R^*_p, and $M_P(\mathbb{R})$ separates points in R^*_p.

We shall call R^*_p the P-compactification and $M^*_p(\mathbb{R})$ the P-algebra of \mathbb{R}. For the continuations of $f \in M_P(\mathbb{R})$ to R^* and R^*_p we use the same notation f.

P-regularity can be given the following explicit characterization:

3. A point $x \in R^*_p$ will be called P-regular or P-singular according as there does or does not exist a function $f \in M_P(\mathbb{R})$ with $f(x) \neq 0$. By
Theorem 1. A point \(x \in \mathbb{R}^n \) is \(P \)-regular if and only if the density function \(P \) has a finite integral at \(x \), i.e. there exists an open neighborhood \(U \) of \(x \) in \(\mathbb{R}^n \) with \(\int_{U \cap \mathbb{R}} P \, dV < \infty \).

Proof. If \(x \) is \(P \)-regular, there exists a function \(f \in M_p(\mathbb{R}) \) with \(f(x) \neq 0 \). Choose \(\epsilon > 0 \) such that \(|f(x)| > \epsilon \). Then \(U = \{ y \in \mathbb{R}^n \mid |f(y)| > \epsilon \} \) is an open neighborhood of \(x \) in \(\mathbb{R}^n \). Since

\[
\int_{U \cap \mathbb{R}} P \, dV \leq \frac{1}{\epsilon^2} \int_{U \cap \mathbb{R}} P^2 \, dV \leq \frac{1}{\epsilon^2} E_{\mathbb{R}}(f),
\]

\(P \) has a finite integral at \(x \).

Conversely suppose that there exists an open neighborhood \(U \) of \(x \) in \(\mathbb{R}^n \) with \(\int_{U \cap \mathbb{R}} P \, dV < \infty \). Since \(\mathbb{R}^n - \pi_1^{-1}(U) \) and \(\pi_1^{-1}(x) \) are disjoint closed sets in \(\mathbb{R}^n \), we can choose a function \(g \in M(\mathbb{R}) \) such that \(0 \leq g \leq 1 \), \(g \mid \pi_1^{-1}(x) = 1 \), and \(g \mid \mathbb{R}^n - \pi_1^{-1}(U) = 0 \). Then we have

\[
\int_{\mathbb{R}} P g^2 \, dV = \int_{\mathbb{R} \setminus \pi_1^{-1}(U)} P g^2 \, dV + \int_{\pi_1^{-1}(U)} P g^2 \, dV \leq \int_{\mathbb{R} \setminus \pi_1^{-1}(U)} P \, dV + \int_{U \cap \mathbb{R}} P \, dV < \infty.
\]

Thus \(g \in M_p(\mathbb{R}) \) and \(g(x) = 1 \), i.e. \(x \) is \(P \)-regular.

A point \(s \in \mathbb{R}^n \) is \(P \)-singular if and only if \(\int_{U \cap \mathbb{R}} P \, dV = \infty \) for each open neighborhood \(U \) of \(s \) in \(\mathbb{R}^n \).

Remark. If there exist no \(P \)-singular points, then we have the special case \(\mathbb{R}^n = \mathbb{R}^n \) studied in Royden [5]. In our note we assume that \(s \) exists. The concept of a \(P \)-singular point was introduced in Nakai-Sario [4], and the term "\(P \) has a finite integral at \(x \)" in Glasner-Katz [2].

4. We write \(f = \text{BE-lim}_n f_n \) on \(\mathbb{R} \) if the sequence \(\{ f_n \} \) is uniformly bounded on \(\mathbb{R} \), converges to \(f \) uniformly on compact subsets of \(\mathbb{R} \), and \(E_{\mathbb{R}}(f_n - f) \to 0 \) as \(n \to \infty \). In view of the BD-completeness of Royden’s algebra \(M(\mathbb{R}) \) (e.g. Sario-Nakai [6]) it is not difficult to see that the \(P \)-algebra \(M_p(\mathbb{R}) \) is BE-complete.

Let \(\Delta_p = \pi_p(\Delta) \) and denote by \(M_{p0}(\mathbb{R}) \) the space of functions in \(M_p(\mathbb{R}) \) with compact supports in \(\mathbb{R} \), and by \(M_{p\Delta}(\mathbb{R}) \) the space of BE-limits in \(M_p(\mathbb{R}) \) of functions in \(M_{p0}(\mathbb{R}) \). As in the case of the potential subalgebra \(M_\Delta(\mathbb{R}) \) (cf. [3]) we have the duality:

Proposition 3. \(M_{p\Delta}(\mathbb{R}) = \{ f \in M_p(\mathbb{R}) \mid f = 0 \text{ on } \Delta_p \} \).

Proof. It suffices to show that
THE P-COMPACTIFICATION FOR \(\Delta u = Pu \)

\[
M_{P\Delta}(R) = \{ f \in M_P(R) \mid f \equiv 0 \text{ on } \Delta \}.
\]

Since \(M_{P\Delta}(R) \subset M_\Delta(R) \), \(M_{P\Delta}(R) \subset \{ f \in M_P(R) \mid f \equiv 0 \text{ on } \Delta \} \) (cf. [3]). Conversely, suppose that \(f \in M_P(R) \) vanishes identically on \(\Delta \). Since \(M_P(R) \) is a lattice, we may assume that \(f \geq 0 \). Choose a sequence \(\{ f_n \} \) of functions in \(M(R) \) with compact supports in \(R \) such that \(0 \leq f_n \leq f \) and \(f = \text{BD-lim}_n f_n \) on \(R \). By Lebesgue’s dominated convergence theorem

\[
\int_R Pf^2 \, dV = \lim_{n \to \infty} \int_R P f_n^2 \, dV.
\]

Consequently \(f \in M_{P\Delta}(R) \) as desired.

Corollary. \(M_{P\Delta}(R) \) is an ideal of \(M_P(R) \).

5. We turn to the vector space \(\text{PBE}(R) \) of bounded energy-finite \(P \)-harmonic functions on \(R \).

We maintain (for Royden’s compactification cf. Glasner-Katz [2]):

Theorem 2. The vector space \(\text{PBE}(R) \) is \(m \)-dimensional if and only if the \(P \)-harmonic boundary \(\Delta_P \) consists of \(m+1 \) points whenever \(s \in \Delta_P \). If \(s \) does not lie on \(\Delta_P \), then \(\dim \, \text{PBE}(R) \) equals the cardinality of \(\Delta_P \).

For the proof we first establish the orthogonal decomposition:

Lemma 1. \(M_P(R) = \text{PBE}(R) \oplus M_{P\Delta}(R) \).

Proof. Let \(f \in M_P(R) \). Since \(M_P(R) \) is a vector lattice we may assume that \(f \geq 0 \) on \(R \).

For a regular exhaustion \(\{ R_n \} \) of \(R \) consider the functions \(u_n \in M_P(R) \) such that \(u_n \in \text{PBE}(R_n) \) and \(u_n \equiv f \) on \(R - R_n \). By the energy principle (cf. 1),

\[
E_R(u_n) \leq E_R(f) < \infty,
\]

\[
E_R(u_n) = E_R(u_{n+p}) + E_R(u_{n+p} - u_n)
\]

for all \(n, p \geq 1 \). Hence \(\{ u_n \} \) is \(E \)-Cauchy. Since it is uniformly bounded on \(R \), we may assume that it converges to a \(P \)-harmonic function, uniformly on compact subsets of \(R \) (cf. Royden [5]).

Set \(u = \text{BE-lim}_n u_n \) and \(g = \text{BE-lim}_n (f - u_n) \) on \(R \). Then \(f = u + g \) is the desired decomposition. Its uniqueness is obvious by the definition of \(M_{P\Delta}(R) \).

Lemma 2. \(R \in O_{\text{PBE}} - O_G \) if and only if \(\Delta_P = \{ s \} \).
Proof. If $\Delta_P = \{s\}$, $M_P(R) = M_{PA}(R)$ and $PBE(R) = \{0\}$.

Conversely, suppose that there exists a P-regular point x in Δ_P. Choose open neighborhoods U, V of s in R^n_s such that $x \in U$ and $V \subset U$. Since $\pi^{-1}_P(V)$ and $\pi^{-1}_P(R^n_s - U)$ are disjoint closed sets in R^n, we can construct an $f \in M_P(R)$ with $0 \leq f \leq 1$, $f|\pi^{-1}_P(V) = 0$, and $f|\pi^{-1}_P(R^n_s - U) = 1$.

Let $f = u + g$ be the decomposition in Lemma 1. Then u is a non-constant PBE-function and therefore $R \in O_{PBE} - O_P$.

Proof of Theorem 2. Let $\{x_1, \ldots, x_m\}$ be a finite subset of $\Delta_P - s$. As in the proof of Lemma 2, we can construct nonconstant functions u_i in $PBE(R)$ with $u_i(x_i) = \delta_{ij}$. Since the u_i are linearly independent, $\dim PBE(R) = \infty$ whenever Δ_P is an infinite set.

Suppose that the cardinality of Δ_P is $m + 1$ and that $s \in \Delta_P$. For any $u \in PBE(R)$, $u - \sum_{i=1}^m u(x_i)u_i \in PBE(R) \cap M_{PA}(R) = \{0\}$ and we conclude that $\dim PBE(R) = m$ is the cardinality of $\Delta_P - s$.

The proof in the case in which the cardinality of Δ_P is finite and $s \in \Delta_P$ is the same.

6. We have seen that the dimension of the space $PBE(R)$ is equal to the cardinality of the P-harmonic boundary whenever the P-singular point s does not lie on Δ_P. Thus the existence of s in this case is, in a sense, of little significance as far as the relation of $PBE(R)$ and Δ_P is concerned. It is natural to ask: Can one replace the density P by another, Q, such that $\dim PBE(R) = \dim QBE(R)$, and a Δ_P-singular point does not exist?

First we prove:

Theorem 3. The P-singular point s lies on $R^n_s - \Delta_P$ if and only if there exists a PBE-function u on R such that $u = 1$ on Δ_P.

Proof. The necessity is trivial since $PBE(R) \subset M_P(R)$. For the sufficiency choose an $f_s \in M_P(R)$ for a given $x \in \Delta_P$ such that $f_s \geq 0$ and $f_s(x) > 0$. Since Δ_P is compact we can construct a function $f \in M_P(R)$ with $f \geq 0$ and $f|\Delta_P > 0$. Set $\alpha = \min \Delta_P f > 0$, and let $\alpha^{-1}(f|\Delta_P) = u + g$ be the decomposition in Lemma 1. Then u has the required property.

Theorem 4. If P, Q are densities on R which coincide on an open neighborhood U of Δ in R^*, then $\dim PBE(R) = \dim QBE(R)$.

Proof. First we show that Δ_P and Δ_Q have the same cardinality. Let $\pi_P : R^* \rightarrow R^n_s$ be the natural projection and let $\pi_P(x) \neq \pi_P(y)$ for $x, y \in \Delta$. Then there exists a function $f \in M_P(R)$ with $f(x) \neq f(y)$. Choose an open neighborhood V of Δ in R^* such that $\bar{V} \subset U$ and a
function \(g \in M(R) \) such that \(0 \leq g \leq 1 \), \(g|V = 1 \), and \(g|U^* = U = 0 \). Clearly \(fg \in M_Q(R) \) and \((fg)(x) \neq (fg)(y) \), i.e. \(\pi_Q(x) \neq \pi_Q(y) \). We infer that the cardinalities of \(\Delta_P \) and \(\Delta_Q \) coincide, and therefore \(\dim PBE(R) = \infty \) if and only if \(\dim QBE(R) = \infty \).

Let the common cardinality of \(\Delta_P \) and \(\Delta_Q \) be \(k < \infty \). If the \(P \)-singular point \(s_P \) belongs to \(\Delta_P \), choose \(x \in \Delta \) such that \(\pi_P(x) = s_P \). Then it is easily seen that \(\pi_Q(x) \) is the \(Q \)-singular point and \(\pi_Q(x) \in \Delta_Q \). By Theorem 2 it follows that \(\dim PBE(R) = \dim QBE(R) = k - 1 \) (resp. \(k \)) if \(s_p \in \Delta_P \) (resp. \(s_p \in \Delta_P \)).

If a \(P \)-singular point \(s_P \) exists but does not lie on \(\Delta_P \), then it may be called a “removable” \(P \)-singular point in the following sense:

THEOREM 5. If the \(P \)-singular point \(s_P \) lies on \(R_p^* - \Delta_P \), there exists a density \(Q \) on \(R \) such that \(\dim QBE(R) = \dim PBE(R) \) and \(\int_R Q \, dV < \infty \).

PROOF. Choose open neighborhoods \(U, V \) of \(s_P \) in \(R^* \) such that \(V \subseteq U \) and \(\overline{U} \cap \Delta_P = \emptyset \). Since \(\pi_P^{-1}(V) \) and \(R^* - \pi_P^{-1}(U) \) are disjoint closed subsets of \(R^* \) there exists a function \(f \in M_P(R) \) with \(0 \leq f \leq 1 \), \(f|\pi_P^{-1}(V) = 0 \), and \(f|R^* - \pi_P^{-1}(U) = 1 \).

Set \(Q = f^*P \). Then \(\int_R Q \, dV = \int_R Pf^* dV \leq E_R(f) < \infty \), and by Theorem 4 we have \(\dim QBE(R) = \dim PBE(R) \).

BIBLIOGRAPHY