Let \(S \) be a scheme and let \(G \) be a group scheme over \(S \). If \(\alpha: G \times X \to X \) is an action of \(G \) on \(X \) over \(S \) (cf. [4]), we say that \((X, \alpha)\) or simply \(X \) is a \(G \)-scheme over \(S \). The 'fixed point functor' \(h^G_X \) of \(G \) in \(X \) is defined as follows. For each \(S \)-scheme \(Y \), let \(Y_\alpha \) denote the trivial \(G \)-scheme \((F, \rho_2)\). Then

\[
h^G_X(Y) = \text{(set of } G\text{-linear } S\text{-morphisms } \varphi: Y_\alpha \to X)\text{.}
\]

Theorem 1. If \(\mathcal{C} \) is the category of locally noetherian \(S \)-schemes and quasicompact \(S \)-morphisms, \(X \) is a \(G \)-scheme in \(\mathcal{C} \), and \(G \) is flat over \(S \), then \(h^G_X \) is represented by a closed subscheme \(X^G \) of \(X \).

In this vast generality it is not to be expected that much detailed information about \(X^G \) can be obtained. Nevertheless, one does have the following 'rigidity' result when \(G \) is an abelian scheme over \(S \) (cf. [4]).

Theorem 2. Let \(G \) be an abelian scheme over \(S \) and let \(X \) be a connected locally noetherian \(G \)-scheme over \(S \). Then either \(X^G \) is empty or \(X^G = X \).

It is conceivable that this property could be used as the starting point for the general theory of abelian schemes, e.g., commutativity and Chow's theorem (cf. [3]) are easy consequences of Theorem 2.

For a deeper study of fixed point schemes, we restrict ourselves to the category of algebraic schemes over a field \(k \), acted upon by algebraic groups (i.e., smooth group schemes of finite type) over \(k \). One result, which is related to a special case of a recent result of G. Horrocks [2], is

Proposition 3. Let \(G \) be a linear algebraic group over \(k \). The largest \(k \)-closed normal subgroup \(H \) of \(G \) such that, for all proper connected \(G \)-schemes \(X \) over \(k \), \(X^H \) is connected is the unipotent radical of \(G \).

For smooth schemes and 'very good groups' one has:

AMS 1970 subject classifications. Primary 14L15.

Key words and phrases. Group scheme, action, fixed point, abelian scheme, unipotent group, linearly reductive group.

\(^1 \) The author was supported by a grant under NSF-GP-25329.
Proposition 4. If a linearly reductive linear algebraic group G acts on a smooth algebraic scheme X over k, then X^G is smooth over k.

It seems to be an open question whether X^o is smooth in the case of a semisimple group G acting on a smooth X over a field k of characteristic $p > 0$. This is false for finite groups G such that p divides the order of G.

References