Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Function algebras and the de Rham theorem in ${\text {PL}}$
HTML articles powered by AMS MathViewer

by Howard Osborn PDF
Bull. Amer. Math. Soc. 77 (1971), 386-391
References
  • Thomas Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245–256. MR 225327
  • Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, DOI 10.2307/1969302
  • F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
  • 4. J. Milnor, Lectures on characteristic classes, Princeton University, Princeton, N. J., 1958.
  • Howard Osborn, Modules of differentials. I, Math. Ann. 170 (1967), 221–244. MR 213987, DOI 10.1007/BF01350153
  • 6. H. Osborn, Differential geometry inPL (in preparation).
  • R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 54–67 (French). MR 0102071
  • E. C. Zeeman, Polyhedral $n$-manifolds. I. Foundations, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 57–64. MR 0158370
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57D20, 58A10, 57C99
  • Retrieve articles in all journals with MSC (1970): 57D20, 58A10, 57C99
Additional Information
  • Journal: Bull. Amer. Math. Soc. 77 (1971), 386-391
  • MSC (1970): Primary 57D20, 58A10; Secondary 57C99
  • DOI: https://doi.org/10.1090/S0002-9904-1971-12707-6
  • MathSciNet review: 0276979