Function algebras and the de Rham theorem in ${\text {PL}}$
HTML articles powered by AMS MathViewer
- by Howard Osborn PDF
- Bull. Amer. Math. Soc. 77 (1971), 386-391
References
- Thomas Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245–256. MR 225327
- Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, DOI 10.2307/1969302
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713 4. J. Milnor, Lectures on characteristic classes, Princeton University, Princeton, N. J., 1958.
- Howard Osborn, Modules of differentials. I, Math. Ann. 170 (1967), 221–244. MR 213987, DOI 10.1007/BF01350153 6. H. Osborn, Differential geometry inPL (in preparation).
- R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 54–67 (French). MR 0102071
- E. C. Zeeman, Polyhedral $n$-manifolds. I. Foundations, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 57–64. MR 0158370
Additional Information
- Journal: Bull. Amer. Math. Soc. 77 (1971), 386-391
- MSC (1970): Primary 57D20, 58A10; Secondary 57C99
- DOI: https://doi.org/10.1090/S0002-9904-1971-12707-6
- MathSciNet review: 0276979