A relation between two simplicial algebraic $K$-theories
HTML articles powered by AMS MathViewer
- by S. M. Gersten and D. L. Rector PDF
- Bull. Amer. Math. Soc. 77 (1971), 397-399
References
- H. Bass, A. Heller, and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 61–79. MR 174605, DOI 10.1007/BF02684690
- A. K. Bousfield and D. M. Kan, Homotopy with respect to a ring, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 59–64. MR 0326734
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- S. M. Gersten, $K$-theoretic interpretation of tame symbols on $k(t)$, Bull. Amer. Math. Soc. 76 (1970), 1073–1076. MR 263895, DOI 10.1090/S0002-9904-1970-12566-6
- S. M. Gersten, On Mayer-Vietoris functors and algebraic $K$-theory, J. Algebra 18 (1971), 51–88. MR 280570, DOI 10.1016/0021-8693(71)90127-X
- S. M. Gersten, On the functor $K_{2}$. I, J. Algebra 17 (1971), 212–237. MR 292910, DOI 10.1016/0021-8693(71)90030-5 7. S. M. Gersten, Stable K-theory of discrete rings(to appear).
- Max Karoubi and Orlando Villamayor, Foncteurs $K^{n}$ en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419 (French). MR 251717 9. M. Karoubi and O. Villamayor, Groupes d’homotopie algébriques et foncteurs K, Institute de Recherche Mathématique Avancée, CNRS, Strasbourg (preprint).
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI 10.1007/BF01425486
- A. Nobile and O. E. Villamayor, Sur la $K$-théorie algébrique, Ann. Sci. École Norm. Sup. (4) 1 (1968), 581–616 (French). MR 240172, DOI 10.24033/asens.1172 13. D. Quillen, Cohomology of groups(preprint). 14. D. Quillen, The K-theory associated to a finite field. I (preprint).
- Richard G. Swan, Nonabelian homological algebra and $K$-theory, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 88–123. MR 0257185
Additional Information
- Journal: Bull. Amer. Math. Soc. 77 (1971), 397-399
- MSC (1970): Primary 18F25, 55B15, 16A54, 13D15, 55F50
- DOI: https://doi.org/10.1090/S0002-9904-1971-12712-X
- MathSciNet review: 0276305