Let \(M \) be an \(n \)-dimensional, differentiable manifold with a (possibly empty) boundary \(\partial M \). A smooth, codimension-one foliation of \(M \) is a decomposition of \(M \) into disjoint, connected subsets, called the leaves of the foliation, with the following properties:

(i) At each point \(p \in M \) there exist local \(C^\infty \)-coordinates \((x_1, \ldots, x_n)\) such that in a neighborhood of \(p \) the leaves are described by the equations \(x_n = \text{constant} \).

(ii) Each component of \(\partial M \) is a leaf.

In 1951 George S. Reeb constructed a smooth, codimension-one foliation of \(S^2 \) \([4]\), and it has since been shown by Lickorish \([2]\), and independently by Novikov and Zieschang, that, in fact, every compact, orientable 3-manifold can be so foliated. By using the polynomial \(p(Z_0, Z_1, Z_2) = Z_0^3 + Z_1^3 + Z_2^3 \) in complex 3-space and the theorems in \([3]\), we prove the following:

Theorem 1. There exists a smooth, codimension-one foliation of \(S^8 \) having one compact leaf \(B \) such that:

(a) \(B \) is diffeomorphic to \(S^1 \times L \) where \(L \) is a circle bundle over a 2-torus, \(T^2 \).

(b) All the noncompact leaves of one component of the foliation are diffeomorphic to \(\mathbb{R}^2 \times T^2 \).

(c) All the noncompact leaves of the other component have the homotopy-type of a bouquet \(S^2 \vee \cdots \vee S^2 \) of eight 2-spheres.

By using Theorem 1 and an inductive procedure, we then establish

Theorem 2. There exist smooth, codimension-one foliations of each of the spheres \(S^{4k+3} \) for \(k = 1, 2, 3, \ldots \). (The sequence begins: \(S^8, S^7, S^{11}, S^{19}, S^{38}, \ldots \).

Corollary 1. For \(n = 2^k + 1, k = 1, 2, 3, \ldots \), there exist smooth, codimension-one foliations of the manifolds \(D^2 \times S^n \) and \(D^2 \times V_{n+1,2} \) where \(V_{n+1,2} = \text{SO}(n+1)/\text{SO}(n-1) \).

Corollary 2. For \(n = 2^k + 4, k = 1, 2, 3, \ldots \), there exist smooth,
codimension-one foliations of the classical groups $\text{SO}(n)$, $\text{SU}(n/2)$, $\text{Sp}(n/4)$ and their associated Stiefel manifolds. (For the Sp-case we must have $k > 1$.)

Let \mathbb{C}^{n+1} denote $(n+1)$-dimensional, complex number space and set

$$S^{2n+1} = \{ Z \in \mathbb{C}^{n+1}: |Z|^2 = 1 \}.$$

We consider, for each integer d, the compact, differentiable manifold

$$\Sigma^{2n-1}(d) = \{ Z \in S^{2n+1}: Z_{d}^{2} + Z_{1}^{2} + Z_{2}^{2} + \cdots + Z_{n}^{2} = 0 \}.$$

If $d \equiv \pm 1 \pmod{8}$, then $\Sigma^{2n-1}(d)$ is a standard $(2n-1)$-sphere which is knotted in S^{2n+1} [1, §11]. Using Corollary 1 and [3, Theorem 4.8], we obtain

Corollary 3. For $n = 2k-1 + 1$, $k = 2, 3, 4, \ldots$, and for each $d \equiv \pm 1 \pmod{8}$ there exists a smooth, codimension-one foliation of Σ^{2n+1} having as a compact leaf the boundary of a tubular neighborhood of the knotted sphere $\Sigma^{2n-1}(d)$.

We then change our approach and study the natural action of $\text{SO}(n)$ on $\Sigma^{2n-1}(d)$ (cf. [1, §5]). By working with the orbit space and using Corollary 1, we are able to prove

Theorem 3. For $n = 2k + 3$, $k = 1, 2, 3, \ldots$, and for any d, there exists a smooth, codimension-one foliation of the manifold $\Sigma^{n}(d)$.

Corollary 1 is due to Alberto Verjovsky whose conversation was of great value to me during the preparation of this work. Detailed proofs of the above theorems will appear elsewhere.

Bibliography

I.M.P.A., Rio DE JANEIRO, BRAZIL

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720