Toeplitz operators in multiply connected regions
HTML articles powered by AMS MathViewer
- by M. B. Abrahamse PDF
- Bull. Amer. Math. Soc. 77 (1971), 449-454
References
- P. R. Ahern and Donald Sarason, The $H^{p}$ spaces of a class of function algebras, Acta Math. 117 (1967), 123β163. MR 217600, DOI 10.1007/BF02395043
- L. A. Coburn, Weylβs theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285β288. MR 201969, DOI 10.1307/mmj/1031732778
- R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) BirkhΓ€user, Basel, 1969, pp.Β 53β66. MR 0259638
- R. G. Douglas, Toeplitz and Wiener-Hopf operators in $H^{\infty }+C$, Bull. Amer. Math. Soc. 74 (1968), 895β899. MR 229070, DOI 10.1090/S0002-9904-1968-12071-3 5. R. G. Douglas, Topics in analysis, Holt, Rinehart and Winston, New York, N. Y., 1971 (to appear).
- R. G. Douglas and Carl Pearcy, Spectral theory of generalized Toeplitz operators, Trans. Amer. Math. Soc. 115 (1965), 433β444. MR 199706, DOI 10.1090/S0002-9947-1965-0199706-5
- R. G. Douglas and Donald Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc. 26 (1970), 117β120. MR 259639, DOI 10.1090/S0002-9939-1970-0259639-X
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Morisuke Hasumi, Invariant subspace theorems for finite Riemann surfaces, Canadian J. Math. 18 (1966), 240β255. MR 190790, DOI 10.4153/CJM-1966-027-1
- G. C. Tumarkin and S. Ja. Havinson, Existence in multiply-connected regions of single-valued analytic functions with a given modulus of boundary values, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 543β562 (Russian). MR 0097522
- Michael Voichick and Lawrence Zalcman, Inner and outer functions on Riemann surfaces, Proc. Amer. Math. Soc. 16 (1965), 1200β1204. MR 183883, DOI 10.1090/S0002-9939-1965-0183883-1
- Harold Widom, Inversion of Toeplitz matrices. II, Illinois J. Math. 4 (1960), 88β99. MR 130572
- Harold Widom, Toeplitz operators on $H_{p}$, Pacific J. Math. 19 (1966), 573β582. MR 201982, DOI 10.2140/pjm.1966.19.573
- Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241β269. MR 252665, DOI 10.1090/S0002-9947-1969-0252665-2
Additional Information
- Journal: Bull. Amer. Math. Soc. 77 (1971), 449-454
- MSC (1970): Primary 47B35, 46J15; Secondary 30A78
- DOI: https://doi.org/10.1090/S0002-9904-1971-12734-9
- MathSciNet review: 0273435