BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 4, July 1971

JORDAN TRIPLE SYSTEMS, *R*-SPACES, AND BOUNDED SYMMETRIC DOMAINS

BY OTTMAR LOOS¹

Communicated by N. Jacobson, January 6, 1971

ABSTRACT. In this note, we establish a one-to-one correspondence between compact Jordan triple systems (see below for the definition) and symmetric *R*-spaces (i.e., symmetric spaces which are quotients of semisimple Lie groups by parabolic subgroups, see [7]). We obtain a simple geometric characterization of symmetric *R*-spaces among compact symmetric spaces. The noncompact dual of a symmetric *R*-space may be realized as a bounded domain *D* in a real vector space. There is a one-to-one correspondence between boundary components of *D* and idempotents of the corresponding Jordan triple system. Using this, we generalize the results of Wolf-Koranyi [8] to the real case. In particular, the image of *D* under a generalized Cayley transformation is the real equivalent of a Siegel domain of type III.

1. Jordan triple systems. A Jordan triple system (=JTS) (see [2], [3]) is a vector space V together with a trilinear map $V \times V \times V \rightarrow V$, $(x, y, z) \mapsto \{xyz\}$, satisfying the following identities:

$$\{xyz\} = \{zyx\},\$$

(2)
$$\{uv\{xyz\}\} = \{\{uvx\}yz\} - \{x\{vuy\}z\} + \{xy\{uvz\}\}\}.$$

For $x, y \in V$ we define the linear map L(x, y) of V by $L(x, y)(z) = \{xyz\}$. A finite-dimensional real JTS is called *compact* if the quadratic form $x \mapsto \text{trace } L(x, x)$ is positive definite. From now on, V will denote a compact JTS. Then V becomes a Euclidean vector space with the scalar product (x, y) = trace L(x, y). By (2), the vector space \mathfrak{S} spanned by $\{L(x, y): x, y \in V\}$ is a Lie algebra of linear transformations of V, closed under taking transposes with respect to (,). Thus the contragredient \mathfrak{S} -module V' of V may be identified with V as a vector space, and $X \cdot v' = -{}^t X(v')$, for $X \in \mathfrak{S}$ and $v' \in V'$.

THEOREM 1 (KOECHER). (a) $\mathfrak{L} = V + \mathfrak{H} + V'$ becomes a semisimple Lie algebra with the definitions

$$[X, Y] = XY - YX, \qquad [X, v] = -[v, X] = X \cdot v,$$

Copyright © 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 17B60, 17E05, 32M15, 53C35.

Key words and phrases. Jordan triple system, symmetric R-space, bounded symmetric domain, boundary component, idempotent, Cayley transformation.

¹ Research supported by Deutsche Forschungsgemeinschaft.

for X, Y in \mathfrak{H} and $v \in V \cup V'$;

 $[V, V] = [V', V'] = 0, \qquad [u, v'] = -2L(u, v),$

for $u \in V$ and $v' \in V'$.

(b) $Z = -Id_V$ belongs to \mathfrak{H} , $(ad Z)^3 = ad Z$, and the -1-, 0-, +1-eigenspaces of ad Z are V, \mathfrak{H} , V'.

It is easily seen that the map $\tau: X \mapsto -tX$ $(X \in \mathfrak{H}), v \mapsto v', v' \mapsto v$, is a Cartan involution of \mathfrak{X} , and that $\sigma | \mathfrak{H} = +1, \sigma | V + V' = -1$ defines an involutive automorphism σ of \mathfrak{X} commuting with τ .

2. Symmetric *R*-spaces. Keeping the above notations, let *L* be the centerfree connected Lie group with Lie algebra \mathfrak{X} , let *H* be the centralizer of *Z* in *L*, let *U* be the maximal compact subgroup of *L* determined by τ , and let $K = U \cap H$. Then *K* lies between the full fixed point set of σ in *U* and its identity component. The normalizer *P* of *V* in *L* is parabolic, and we have $U/K \cong L/P$. Thus M = U/K is a symmetric *R*-space (cf. [7]).

THEOREM 2. The map $V \mapsto M$ establishes a one-to-one correspondence between isomorphism classes of compact JTS and symmetric R-spaces.

Let M be a compact symmetric space, o a point of M, and A a maximal torus of M containing o. The tangent space of A at o is denoted by $T_o(A)$. Then $\Lambda(M) = \{v \in T_o(A) : \text{Exp } v = 0\}$ is a lattice in $T_o(A)$, the unit lattice of M (with respect to A). We say that M has cubic unit lattice if there exists a Riemannian metric on M, invariant under all symmetries, and an orthonormal basis e_1, \dots, e_r of $T_o(A)$ with respect to this metric, such that $\Lambda(M) = \sum \mathbf{Z} \cdot e_i$.

THEOREM 3. A compact symmetric space is a symmetric R-space if and only if it has cubic unit lattice.

As a special case, we obtain the following characterization of the classical groups: A compact connected Lie group is a direct product of the groups SO(n), U(n), Sp(n) if and only if it has cubic unit lattice. The fact that symmetric R-spaces have cubic unit lattice is contained in [7]. Theorem 3 may be used to give a global classification of symmetric R-spaces (and hence of compact JTS). The classification has been obtained by different methods in [1] and [4].

3. Bounded symmetric domains. Keeping the previous notations, let G be the connected fixed point set of $\sigma\tau$ in L. Then $M^* = G/K_0$ is the noncompact dual of M. There is an imbedding $\zeta: M^* \to V$ such that $g \equiv \exp(\zeta(gK_0)) \mod P$, for $g \in G$. The image $D = \zeta(M^*)$ is a

OTTMAR LOOS

bounded domain in V (see [4], [7]) which inherits a Riemannian metric from M^* . This generalizes the Harish-Chandra imbedding of a Hermitian symmetric space of noncompact type. Following Pjateckii-Shapiro [5], two points x, y in \overline{D} (the closure of D in V) will be called equivalent if there exist sequences (x_n) , (y_n) in D, converging to x, y respectively, such that the Riemannian distance of x_n and y_n remains bounded. The equivalence classes are the *metric* boundary components of D. We also define affine boundary components as follows. By a segment in V we mean a set of the form $\{a+tb:0 < t < 1\}$ where $a, b \in V$. Then a subset F of \overline{D} is called an affine boundary component if (1) every segment contained in \overline{D} and meeting F is contained in F, (2) no proper nonempty subset of F satisfies (1).

An element c of V is called an *idempotent* if $\{ccc\} = c$. Part of the following theorem is due to K. Meyberg (unpublished).

THEOREM 4. (a) There is a Peirce-decomposition $V = V_1(c) + V_{1/2}(c) + V_0(c)$ where $V_i(c)$ is the eigenspace of L(c, c) corresponding to the eigenvalue *i*.

(b) With $x \circ y = \{xcy\}$, $V_1(c)$ is a real semisimple Jordan algebra with unit element c. The map $x \mapsto \bar{x} = \{cxc\}$ is a Cartan involution of $V_1(c)$; in particular, $V_1^+(c) = \{x \in V_1(c) : \bar{x} = x\}$ is a formally real Jordan algebra.

(c) With the induced multiplication, $V_0(c)$ is a compact JTS.

Now we can describe the relation between boundary components and idempotents.

THEOREM 5. Metric and affine boundary components coincide; they are precisely the sets $F_c = c + (D \cap V_0(c))$ where c is an idempotent. $D_c = D \cap V_0(c)$ is the bounded symmetric domain belonging to the compact JTS $V_0(c)$.

This allows us to recover all the results of [8]. In particular, the space of boundary components of a given type is a fibre bundle over a compact symmetric space, and the stability group of a boundary component in G is parabolic. Finally, we define the Cayley transformation belonging to an idempotent c (resp. a boundary component F_c) to be $\gamma_c = \exp \frac{1}{4}\pi(c+\tau(c))$. For $z \in D_c$ and $x, y \in V_{1/2}(c)$ set $\Phi_z(x, y) = \{x, (\mathrm{Id} + \mu(z))^{-1}(y), c\}$ where $\mu(z)(y) = 2\{cyz\}$. Also for $u \in V_1(c)$ let Re $u = \frac{1}{2}(u+\bar{u}) \in V_1^+(c)$, and denote by Y the interior of the set of squares of $V_1^+(c)$. This is the self-dual cone (domain of positivity) associated with the formally real Jordan algebra $V_1^+(c)$.

THEOREM 6. The image of D under the Cayley transformation γ_c is the set of all $x+y+z \in V_1(c) + V_{1/2}(c) + V_0(c)$ such that $z \in D_c$ and $\operatorname{Re}(x-\Phi_z(y, y)) \in Y$, a real Siegel domain of type III.

In the special case where c is a maximal idempotent, i.e., $V_0(c) = 0$, we have $\gamma_c(D) = \{x + y \in V_1(c) + V_{1/2}(c) : \text{Re } x - \{yyc\} \in Y\}$, a real Siegel domain of type II. This result is due to Takeuchi [7], see also [6].

References

1. S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875–907. MR 29 #5961.

2. M. Koecher, An elementary approach to bounded symmetric domains, Lecture Notes, Rice University, Houston, Texas, 1969.

3. K. Meyberg, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Math. Z. 115 (1970), 58-78.

4. T. Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428-453. MR 32 #419.

5. I. I. Pjateckii-Šapiro, Geometry of classical domains and theory of automorphic functions, Fizmatgiz, Moscow, 1961; French transl., Dunod, Paris, 1966; English transl., Gordon and Breach, New York, 1967. MR 25 #231; MR 33 #5949.

6. V. I. Semjanistiĭ, Symmetric domains and Jordan algebras, Dokl. Akad. Nauk SSSR 190 (1970), 788-791 = Soviet Math. Dokl. 11 (1970), 215-218.

7. M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81-192. MR 35 #7350.

8. J. A. Wolf and A. Koranyi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899–939. MR 33 #229.

Mathematisches Institut der Universität, 8 München 13, Schellingstrasse 2-8, Germany