INFINITE RESISTIVE NETWORKS

BY HARLEY FLANDERS

Communicated by S. Smale, January 4, 1971

An infinite resistive network \(N \) consists of a connected, locally finite, oriented, infinite graph with branches \(B_1, B_2, \ldots \). To each branch \(B_i \) is associated a resistance \(r_i \geq 0 \). We are also given a voltage source, i.e., a finite 1-cochain \(E' \), and a current source, i.e., a finite 0-chain \(i \) satisfying \(\partial i = 0 \).

For each (real) 1-chain \(\mathbf{c} = \sum a_i B_i \), define \(\| \mathbf{c} \| \) by \(\| \mathbf{c} \|^2 = \sum a_i^2 r_i \).

Theorem 1. There exists a unique 1-chain \(\mathbf{I} \) such that:

(i) (Kirchhoff's current law). \(\partial \mathbf{I} + \mathbf{i} = 0 \).

(ii) (Kirchhoff's voltage law). For each finite cycle \(\mathbf{Z} \),

\[\langle E', \mathbf{Z} \rangle = \langle R(\mathbf{I}), \mathbf{Z} \rangle, \]

where if \(\mathbf{I} = \sum a_i B_i \), then \(R(\mathbf{I}) \) denotes the 1-cochain \(R(\mathbf{I}) = \sum a_i B'_i \).

Of course \((B'_i, B_i) = \delta_{ij} \).

(iii) (Finite power). \(\mathbf{I} \) is square summable, i.e., \(\| \mathbf{I} \| < \infty \).

(iv) There is a sequence \(\{ \mathbf{C}_j \} \) of finite 1-chains such that \(\partial \mathbf{C}_j + \mathbf{i} = 0 \)

and \(\| \mathbf{C}_j - \mathbf{I} \| \to 0 \).

Theorem 2. Let \(N_j \) be any sequence of subnetworks such that \(N_1 \subseteq N_2 \subseteq \cdots \) and \(\bigcup N_j = N \). Suppose \(N_1 \) is large enough to support the voltage source \(E' \) and the current source \(i \). Let \(\mathbf{I}_j \) be the unique current on \(N_j \) given by Theorem 1. Then \(\| \mathbf{I}_j - \mathbf{I} \| \to 0 \), where \(\mathbf{I} \) is the unique current on \(N \).

The proofs of these results, corollaries, and a full discussion will appear shortly in the IEEE Trans. Circuit Theory.

TEL AVIV UNIVERSITY, RAMAT AVIV, TEL AVIV, ISRAEL

AMS 1970 subject classifications. Primary 94A20; Secondary 05C20, 46C05.

Key words and phrases. Infinite networks, resistive networks.