K-THEORY OF A SPACE WITH COEFFICIENTS IN A (DISCRETE) RING

BY DAVID L. RECTOR

Communicated by M. L. Curtis, January 27, 1971

In [2], [3], S. Gersten has introduced higher K-groups of a ring which satisfy properties analogous to those of a generalized homology theory in a suitably defined homotopy category of rings [1]. In this announcement we use Gersten’s K-groups to define for a ring R a generalized cohomology theory $K^*_R(\cdot)$, analogous to the Atiyah-Hirzebruch K-theory, on the category of finite simplicial sets so that $K^*_R(pt) = K^*_R$, where K^*_R are Gersten’s stable K-groups of the ring R. If R is suitably restricted, in particular if it is commutative and regular, the theory $K^*_R(\cdot)$ will have products and Adams operations. One may also define, using the continuous theory in [6], a K-theory $K^*_\Lambda(\cdot)$ with coefficients in a Banach ring Λ. This theory coincides with the Atiyah-Hirzebruch theory for $\Lambda = R$, C, or H. We give here an outline of proofs. A full account will appear elsewhere.

1. Definition of the theory. We recall the definition of Gersten’s theory as given in [5]. Let R be a ring (without unit). The functor $R \rightarrow R[t]$ together with the natural transformations $R[t] \rightarrow R$ via “$t \rightarrow 1$”, and $R[t] \rightarrow R[t, t']$ via $t \rightarrow tt'$ define a cotriple in the category of rings. If ER is the ideal $R[t, t']$, then the restriction of those maps makes the functor $R \rightarrow ER$ a cotriple. Associated to these cotriples are canonical simplicial rings $R[T]$ and ER with

$$R[T]_n = R[t_0, \ldots, t_n], \quad ER_n = E^{n+1}R.$$

Let QR be the simplicial ring

$$QR = R[T]/ER.$$

One has

$$K^{i-1}R = \pi_i \text{ Gl } QR$$

where Gl denotes the general linear group functor. This K-theory of rings is stabilized as follows [3]. Let IR be the kernel of $R[t, t^{-1}] \rightarrow R$. Then there is a natural homomorphism

AMS 1970 subject classifications. Primary 55B15, 55B20, 13D15, 16A54, 18F25.

* The author was partially supported by NSF grant GP-20552 during the preparation of this work.

Copyright © 1971, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
analogous to the Bott map, which is an isomorphism when \(R \) is \(K \)-regular.

Put

\[
K^i \beta R = \text{inj lim}_n K^{i-n} \Gamma^n R, \quad -\infty < i < \infty.
\]

Then if \(R \rightarrow S \rightarrow T \) is a Gl-fibration \([2]\), there is a long exact sequence

\[
\cdots \rightarrow K^i T \rightarrow K^i S \rightarrow K^i R \rightarrow K^{i+1} \rightarrow \cdots.
\]

Now to define a cohomology theory for simplicial sets, we will give a contravariant functor \((\ ; \ R)\) from simplicial sets to rings which

1. sends coproducts to products,
2. sends cofibrations to Gl-fibrations,
3. sends a point to \(R \).

For \(X \) and \(Y \) simplicial sets, let \(\Delta(X; Y) \) denote the set of all simplicial maps from \(X \) to \(Y \). Put

\[
(X; R) = \Delta(X; QR).
\]

Then \((X; R) \) is a ring and \((pt; R) = R \), since \(QR_0 = R \).

Definition 1.1. For \(X \) a finite simplicial set, \(K^*_R(X) = K^*_R(X; R) \).

The long exact sequence of a cofibration arises from

Proposition 1.2. If \(Y \rightarrow X \rightarrow X/Y \) is a cofibration of simplicial sets then

\[
(X/Y; R) \rightarrow (X; R) \rightarrow (Y; R)
\]

is a Gl-fibration.

This proposition follows from the following properties of the functor \(\Delta(\ ; \) \).

Lemma 1.3. If \(F \) is a functor which is left exact and preserves products then

\[
\Delta(X; FY) = F \Delta(X; Y).
\]

Proof. Follows from the fact that \(F \) preserves equalizers.

Lemma 1.4. If \(Y \) is a simplicial object in a category with a forgetful functor to sets and \(Y \) is contractible as a set complex then \(\Delta(\ Y) \) is an exact functor.
To verify the homotopy axiom for the theory we must prove

Proposition 1.5. If \(X \to Y \) is a map of finite simplicial sets which induces an isomorphism \(H_\bullet(X; \mathbb{Z}) \to H_\bullet(Y; \mathbb{Z}) \), then \(f^! : K^*_R(Y) \to K^*_R(X) \) is an isomorphism.

This proposition follows immediately from the fact that we have an analogue of the Atiyah-Hirzebruch spectral sequence defined intrinsically in the theory \(K^*_R \) as follows.

Let \(X^n \) be the \(n \)-skeleton of \(X \). We have a tower of Gl-fibrations

\[
\cdots \to (X^n; R) \to (X^{n-1}; R) \to \cdots \to (X^0; R).
\]

The long exact \(K^*_R \)-theory sequences of these fibrations define a homology exact couple. The spectral sequence of that couple converges strongly to \(K^*_R(X) \). One has \(E_1^{p,q} = K^{p+q}_R(X^p/X^{p-1}; R) \). By a brute force calculation

Lemma 1.6. \(K^{p+q}_R(X^p/X^{p-1}; R) = \bigoplus \sigma K^{p+q}_R \), where the sum runs over all nondegenerate \(p \)-simplexes \(\sigma \) of \(X \).

Standard diagram chases now establish

Theorem 1.7. There is a natural spectral sequence \(\{ E_r \} \) converging to \(K^*_R(X) \) with

\[
E_2^{p,q} = H^p(X; K^q_R R).
\]

Thus

Theorem 1.8. \(K^*_R(\) \) is a generalized cohomology theory on the category of finite simplicial sets.

In addition,

Theorem 1.9. \(K^*_R(\) \) depends only on the ring homotopy type of \(R \) and if \(R \to S \to T \) is a Gl-fibration of rings there is a natural exact triangle of theories

\[
K^*_R(\) \to K^*_S(\) \to K^*_T(\),
\]

where \(\delta \) has degree \(+1 \).

2. **Products and Adams operations.** Let \(R \) and \(T \) be rings, \(X \) and \(Y \) simplicial sets. We then have a pairing
Given by

\[\phi(\alpha \otimes \beta)(x, y) = \alpha(x) \otimes \beta(y). \]

Using the product structure in \(K_\mathbb{Z}(\) \) [4] one has

Theorem 2.1. There is a natural graded associative pairing

\[K_R^*(X) \otimes K_T^*(Y) \rightarrow K_{R \otimes T}^*(X \times Y). \]

If \(R \) is a commutative ring there is a natural graded commutative ring structure on \(K_R^*(X) \) arising from the diagonal \(\Delta: X \rightarrow X \times X \).

Now suppose that \(R \) is a \(K \)-regular ring [2]. From a truncated version of the spectral sequence of Theorem 1.7 one has

Theorem 2.2. If \(R \) is \(K \)-regular,

\[K^i_\mathbb{Z}(X; R) = K^i(X; R) \]

for \(i \leq 0 \).

Now the theory \(K^i \) has Adams operations which are graded ring homomorphisms. Let \(K_R^*(\) \) be the nonpositive graded part of \(K_R^*(\) \). Then

Theorem 2.3. If \(R \) is \(K \)-regular there are natural graded ring morphisms

\[\psi^k : K_R^-(X) \rightarrow K_R^-(X) \]

for \(k \geq 0 \). The \(\psi^k \) commute with the boundary of the long exact sequence of a cofibration when that makes sense.

Remark 2.4. Using the continuous polynomials of [6] one may define a theory \(K^*_\Lambda(\) \) for \(\Lambda \) a valuation ring. For \(\Lambda = \mathbb{R}, \mathbb{C} \) or \(\mathbb{H} \) there is a natural equivalence

\[K^*_\Lambda(\) \rightarrow K^*_\Lambda(\) \]

where \(K^*_\Lambda \) is the \(K \)-theory of Atiyah and Hirzebruch. It would be interesting to know the coefficient group \(K^*_\Lambda(pt) = K^*_\Lambda \) for \(\Lambda = \mathbb{Q}_p \) or \(\mathbb{Z}_p \).

Remark 2.5. The ring complex \(QR \) above may be replaced by the nicer ring complex \(DR \) where

\[\Delta R_n = R[t_0, \ldots, t_n]/t_0 + \cdots + t_n - 1, \]
and

\[
\begin{align*}
 d_i d_j & = t_j, & i > j, \\
 & = 0, & i = j, \\
 & = t_{j-1}, & i < j, \\
 s_i d_i & = t_i, & i > j, \\
 & = t_i + t_{i+1}, & i = j, \\
 & = t_{i+1}, & i < j.
\end{align*}
\]

One may now redefine \((X; R)\) as the ring of simplicial maps of \(X\) to \(\Delta R\). The same \(K\)-theory for \(X\) now arises in view of

Proposition 2.6. \(\pi_i \text{ GL} \Delta R = K^{-i-1}R, i \geq 0\).

This proposition is proved by showing that \(\pi_i \text{ GL} \Delta R\) satisfies the axioms for \(K^{-i-1}R\) [2].

References

Rice University, Houston, Texas 77001